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Abstract

Understanding the drivers of spatial patterns of genomic diversity has emerged as a major goal of evolutionary genetics.
The flexibility of forward-time simulation makes it especially valuable for these efforts, allowing for the simulation of
arbitrarily complex scenarios in a way that mimics how real populations evolve. Here, we present Geonomics, a Python
package for performing complex, spatially explicit, landscape genomic simulations with full spatial pedigrees that dra-
matically reduces user workload yet remains customizable and extensible because it is embedded within a popular,
general-purpose language. We show that Geonomics results are consistent with expectations for a variety of validation
tests based on classic models in population genetics and then demonstrate its utility and flexibility with a trio of more
complex simulation scenarios that feature polygenic selection, selection on multiple traits, simulation on complex
landscapes, and nonstationary environmental change. We then discuss runtime, which is primarily sensitive to landscape
raster size, memory usage, which is primarily sensitive to maximum population size and recombination rate, and other
caveats related to the model’s methods for approximating recombination and movement. Taken together, our tests and
demonstrations show that Geonomics provides an efficient and robust platform for population genomic simulations that
capture complex spatial and evolutionary dynamics.

Key words: landscape ecology, evolutionary genetics, population dynamics, environmental change, spatial modeling,
Python.

Introduction
Spatial patterns of genomic diversity result from the complex
interplay of many underlying ecological and evolutionary pro-
cesses and are shaped by a wide variety of geographic and
environmental factors. Understanding how these patterns
develop in natural systems has emerged as a primary goal
of modern evolutionary genetics. These systems often occupy
complex and potentially changing landscapes and might in-
clude populations that are not at demographic equilibrium.
They may undergo neutral evolution as well as natural selec-
tion, sometimes on multiple traits of variable genetic archi-
tecture. The study of complex natural systems is crucial for
developing evolutionary and ecological theory (Epperson et
al. 2010; Barrett et al. 2019; Pelletier 2019), understanding the
forces governing the evolution and maintenance of genetic
diversity (Manel et al. 2003; Schoville et al. 2012), anticipating
ecological futures in the Anthropocene (Bay et al. 2018;
Capblancq et al. 2020), and informing conservation and man-
agement (Crossley et al. 2017; Lind et al. 2017). The complex
genomics of many such systems are beyond the reach of
analytical population genetics, and their spatial complexity
and evolutionary dynamics make them intractable for coa-
lescent simulation (Hoban et al. 2012). This hinders not only

our understanding of many empirical systems but also our
ability to predict their dynamics and, thus, to manage them.
Hence, in population and landscape genomics, as in many
other fields, forward-time simulation is a crucial tool for dis-
secting complex study systems.

However, the current suite of forward-time genomic sim-
ulators, although numerous, is still of limited utility for such
work. Most available software is restricted, either genomically
or geospatially, in the complexity, it can model. Many pro-
grams can model systems of considerable genomic complex-
ity (e.g., simuPOP, Peng and Kimmel 2005; NEMO, Guillaume
and Rougemont 2006; QuantiNemo, Neuenschwander et al.
2008) yet incorporate only rudimentary spatial components
or none at all. Other programs are designed specifically for
landscape genetic simulations (e.g., CDPOP, Landguth and
Cushman 2010; CDMetaPOP, Landguth et al. 2017;
SimAdapt, Rebaudo et al. 2013) but are limited in their ge-
nomic complexity. For instance, many programs are unable
to model simultaneous selection on multiple, polygenic traits.
To our knowledge, SLiM (Messer 2013; Haller and Messer
2017; Haller and Messer 2019) is the only package currently
capable of simulating scenarios that are sufficiently complex,
both genomically and geospatially, to model population
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genomic patterns emerging under dynamic evolutionary
processes (according to a search of the National
Cancer Institute’s Genetic Simulation Resources website;
Peng et al. 2013), and its extreme generalizability and com-
plexity allow it to be used for landscape genomics simulation.
Furthermore, many species are distributed continuously in
space, and examining continuous fields of genetic variation
can require distinct methods and assumptions (Bradburd and
Ralph 2019), yet most population genomic simulation pack-
ages, aside from SLiM, are population-based. Such software
requires individuals to be assigned to discrete subpopulations,
which can at best be arranged on a high-resolution, regular
grid in order to approximate continuously distributed
populations.

Here, we present Geonomics, a Python package for
forward-time, individual-based, continuous-space, population
genomic simulations on complex landscapes. Geonomics
models are parameterized by way of an informatively anno-
tated parameters file that provides the user a straightforward
means of building models of arbitrary complexity while offer-
ing reasonable default settings and “off switches” for param-
eters and components unrelated to the user’s interests.
Models consist of 1) a landscape with one or more environ-
mental layers, each of which can undergo arbitrarily complex
environmental change events and 2) one or more species
having genomes with realistic architecture and any number
of associated phenotypes. Species undergo non-Wright-Fisher
evolution in continuous space, with localized mating and
mortality, such that species-level phenomena and simulation
dynamics are emergent properties of a model’s parameteri-
zation. Evolution is comprehensively tracked by way of re-
cently developed data structures that record the complete
spatial pedigree (Kelleher et al. 2018), providing for the cus-
tomizable output of rich, 3D data sets in a variety of common
formats, including VCF and FASTA for genomic data, GeoTiff
for landscape data, and CSV, Shapefile, and GeoJSON for
individuals’ nongenomic data (location, environmental val-
ues, phenotypes, age, and sex). All of this allows Geonomics to
produce realistic landscape genomic results useful for a wide
variety of theoretical and empirical purposes.

New Approaches

Model Design: Overview
A Geonomics model consists of two core components: the
species and the landscape. The species is composed of a set of
individuals and a wide variety of demographic and life-history
parameters, including an intrinsic growth rate, mate-search
radius, the mean number of offspring per mating event, re-
productive age, and maximum age, among others. A species
can undergo any number of change events, including changes
to demographic and life history parameters and various types
of population size changes. Each individual in the species has
an x, y location, a sex, an age (or life-history stage), a set of
phenotypes and a diploid genome consisting of any number
of diallelic loci, which can represent either a contiguous hap-
lotype block or a set of distinct loci. Loci can exhibit different

types of dominance, and recombination rates can be hetero-
zygous across the genome.

Phenotypic traits are continuous and quantitative and can
be monogenic or multigenic. Each trait is defined by the loci
that comprise its genetic basis, the effect sizes of those loci,
and a phenotypic selection coefficient, which can be made
heterogeneous in both space and time, allowing for spatially
complex selection scenarios. While the strength of selection is
determined by that coefficient, the force of selection is rep-
resented by the environmental raster layer to which the trait
is adapting. Loci can have separate mutation rates for three
types of mutations: neutral, deleterious, and trait-affecting
mutations. Neutral mutations do not affect fitness, and del-
eterious mutations decrease fitness without affecting simu-
lated phenotypic traits. Trait-affecting mutations, on the
other hand, introduce mutations at previously unmutated
loci mapped to a trait. This adds to the genetic variation
affecting a trait, thus generating phenotypic variance upon
which natural selection can operate. Mutation rates can be
defined separately for each trait.

The other core component of a Geonomics model, the
landscape, is a stack of raster layers. Each layer can be set to
serve as one or more of 1) a resistance raster, which controls
individual movement or offspring dispersal, 2) a carrying-
capacity raster, which controls population density, and 3) a
fitness raster for a trait, which governs natural selection. A key
feature of Geonomics is that each layer can undergo any
number of arbitrarily complex environmental change events
which, as they unfold, influence the dynamics of any species
whose carrying capacity, movement and dispersal, or fitness
depend on the corresponding layer.

Model Operation: Overview
A Geonomics run begins with a burn-in stage during which
individuals move and reproduce, without genomes or se-
lection, until a series of statistical tests is passed. These tests
include a time-lagged t-test and an augmented Dickey–
Fuller test, which are run as a pair for 1) the total population
size, serving as a test of temporal demographic stability, and
2) both the mean and the standard deviation of timestep-
differenced cell-wise counts of individuals, serving as a test
of spatial demographic stability. This burn-in period results
in a stationary spatial distribution of the species on the
landscape. Following burn-in, each individual has its ge-
nome randomly assigned according to the genomic archi-
tecture parameters, such that the main phase of each run
begins with no pedigree and, thus, without population
structure. Each time step in the main phase is a series of
four operations, some optional (fig. 1):

(1) movement (optional);
(2) mating (requisite), which includes mate search, mate

choice, offspring creation, and offspring dispersal;
(3) mortality, which is due to density-dependence (requisite)

and natural selection (optional);
(4) change events (optional), including both environmental

and demographic changes.
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Model Operation: Movement
Movement takes place in continuous space—individuals
have x, y coordinates, on either real or simulated landscapes,
rather than being arbitrarily restricted to grid cells or bounded
populations. Each individual moves along a vector, composed
of a distance drawn from a Wald distribution and a direction
drawn either from a uniform distribution on the unit circle or
from a movement surface—an array of unimodal or multi-
modal von Mises distributions derived from a landscape layer
that serves as a resistance surface (sensu McRae 2006; Spear et
al. 2010). On a unimodal movement surface, each cell is
assigned a single von Mises distribution, with mode parame-
ter l set to the direction of the highest-valued cell in the 8-cell
neighborhood. On a multimodal surface, each cell’s mixture
distribution is a weighted sum of eight such unimodal distri-
butions, one pointing toward the center of each cell in the 8-

cell neighborhood and with normalized weights equal to the
values of the neighboring cells. This approach to simulating
movement generates realistic, anisotropic movement across a
heterogeneous landscape (fig. 2) while avoiding time-
consuming computational steps, such as repeated searches
for minimum-resistance neighboring cells.

Model Operation: Mating
Potential mating pairs are randomly drawn from among all
eligible pairs of individuals within the mate-search radius (un-
less strict nearest-neighbor mating is chosen), with pairing
probabilities either uniform or inverse-distance weighted
within the mating radius, and with eligibility based on both
sex and age. From among those pairs, actual mating-event
decisions are Bernoulli distributed, with probability equal to
the intrinsic birth rate. Each mating pair produces a number

FIG. 1. Operations during the main phase of a Geonomics model run. In the center is a species on a multilayer landscape that includes a selection
layer (above) and a layer for movement and carrying capacity (below). Surrounding the landscape is a flow-diagram of the major operations during
a time step. Operations in dashed boxes are optional. During the movement stages (top-left), individuals move along movement vectors drawn
from various distribution options (shown is an example of a cell-specific von Mises mixture distribution). During the mating stage (top-right), each
mating individual (black circle) randomly chooses a mate (white circle) from all potential mates within its mating radius (dashed circle). The
resulting offspring (half-black, half-white circle) disperses from its parents’ midpoint along a randomly drawn dispersal vector. During the mortality
stage (bottom-right), deaths are modeled as a Bernoulli process, with the probability of mortality a product of density-dependence and selection
on all traits. During the changes stage (bottom-left), environmental and demographic change events, which can be represented by a series of
change rasters corresponding to scheduled time steps, take place.
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of offspring according to a fixed value or drawn from a
Poisson distribution with k equal to the mean number of
offspring. Each parent produces a gamete for each of its off-
spring, using realistic recombination and Mendelian segrega-
tion. Gametes are united to create offspring individuals, which
then disperse to new locations. As with movement, dispersal
vectors can be drawn isotropically or anisotropically based on
a resistance surface.

Model Operation: Mortality
Mortality is modeled as a Bernoulli process with the proba-
bility of an individual death a combination of the probabilities
of death due to density-dependence (using a logistic-growth
model) and due to natural selection (based on the cumulative
fitness for all traits), calculated as:

P dið Þ ¼ 1� 1� P dx;y

� �� �Ym

p¼1
xi;p; (1)

where P dx;y

� �
is the probability of death due to density-

dependence for individual i, m is the number of traits, and
xi;p is the fitness of individual i for trait p. The probability of
density-dependent death at location x,y is calculated as:

P dx;y

� �
¼

E Nd;x;y

� �

Nx;y
¼

E Nb;x;y

� �
� dNx;y

dt

Nx;y
; (2)

where, for location x,y, E Nd;x;y

� �
is the expected number of

deaths,Nx;y is the population density, E Nb;x;y

� �
is the expected

number of births, and
dNx;y

dt is the population logistic growth
rate. The fitness of individual i for trait p is calculated as:

xi;p ¼ 1� /p;x;yðjep;x;y � zi;pjÞcp ; (3)

where /p;x;y is the phenotypic selection coefficient on trait p
at location x,y, ep;x;y is the value of the selection layer for trait
p at location x,y, zi;p is the phenotype of individual i for trait p,
and cp defines the curvature of the fitness function for trait p.
The phenotype is a result of the additive effects of that indi-
vidual’s genotypes at all underlying loci, and is calculated as:

zi;p ¼
Xn

l¼0
ap;lgi;l þ g0 (4)

where n is the number of loci, ap;l is the effect size of locus l on
trait p, gi;l is the genotype at locus l for individual i, and g0, the
baseline genotype, equals 0 for monogenic traits or 0.5 for
polygenic traits.

Model Operation: Change Events
Each demographic or environmental change event unfolds as
a series of incremental changes that occur at the ends of
scheduled time steps. A demographic change event can be
exponential, random, or cyclical, or it can follow an arbitrarily
complex, custom trajectory. Each event is parameterized by
defining the time steps at which its changes take place and
the factor by which the carrying capacity raster is multiplied.

Simple environmental change events are defined by a ter-
minal raster for the final environmental state and a list of time
steps at which incremental changes occur (based on cell-wise
linear interpolation between the beginning and terminal
states). More complex, custom events can be simulated by
providing a series of environmental rasters labeled with the

FIG. 2. A raster layer representing a movement surface with example movement histograms for each cell (left) and a movement track for a sample
individual (right). The circularized histograms represent the movement directions that could be drawn from the von Mises mixture distribution
approximations within each cell. Longer bars in a histogram indicate higher probability of movement in their direction. The movement track,
plotted with the gnx.help.param_help.plot_movement function in Geonomics, is 5,000 steps long. Both preferential movement toward higher-
suitability regions of the landscape (i.e., cells closer to 1 in value) and occasional long-distance movements between relatively isolated portions of
the landscape are evident.
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time step at which each will be applied. This option makes it
easy to simulate evolution on real-world landscapes under-
going nonlinear, spatially heterogeneous environmental
change.

Results

Validation
To validate the performance of Geonomics, we ran a series of
simulations based on classical population genetic models,
covering both neutral and nonneutral evolutionary scenarios.
Because the classical models are simpler than the individual-
based, spatially explicit, continuous-movement models built
by Geonomics, we parameterized the simulations so as to
accurately emulate these models while minimizing artifacts
(see Validation Testing, Supplementary Material online). Our
goal was to statistically and heuristically validate Geonomics’
full range of functionality and to ensure that it accurately
models neutral and nonneutral evolutionary processes.

To verify that Geonomics effectively models neutral evo-
lution, we first examined the average time to fixation for a
neutral allele in a finite population using simulations approx-
imating a Wright-Fisher model (Fisher 1923; Wright 1930).
We simulated allele-frequency trajectories for 250 indepen-
dent loci (25 of which are plotted in supplementary fig. S1,
Supplementary Material online), and we found that that fix-
ation time did, indeed, increase with population size and was
proportional to 4Ne, as expected (Kimura and Ohta 1969), in
our simulations (supplementary fig. S2, Supplementary
Material online). We then tested for changes in the rate of
drift surrounding a population bottleneck event by forcing a
population to undergo a 70% reduction in size for 50 of 300
timesteps. We found that rates of allele frequency change
increased during the bottleneck, then returned to prior levels
shortly thereafter (supplementary fig. S3, Supplementary
Material online). Finally, we quantified the accumulation of
genetic structure under a stepping-stone model (Kimura
1953) to certify that genetic covariance decreases with dis-
tance (Kimura and Weiss 1964). As expected, we saw that
migration rates decreased as a function of inter-island dis-
tance (supplementary fig. S4, Supplementary Material online),
whereas FST, calculated from both heterozygosity data and
genetic variance data, increased as a function of inter-island
distance (and, therefore, decreased with pairwise migration
rate) and as a function of time (supplementary figs. S4 and S5,
Supplementary Material online). We also performed a dis-
criminant analysis of principal components (DAPC) using
the R package adegenet (Jombart et al. 2010) to confirm
the expected population structure of six island clusters (sup-
plementary fig. S6, Supplementary Material online).

To validate the performance of Geonomics for modeling
nonneutral evolution, we first performed simulations under a
simple scenario of divergent selection between two discrete
habitats. As expected, simulations on a landscape evenly di-
vided by two habitat blocks led to local adaptation, producing
a significant pattern of phenotype-habitat matching (supple-
mentary fig. S7, Supplementary Material online), with mis-
matches concentrated along the border between habitats.

Additionally, over time, the species reached migration–selec-
tion equilibrium—the frequencies of the beneficial alleles in
each habitat increased up to a stationary level, with that level
being positively correlated with the strength of selection (sup-
plementary fig. S8, Supplementary Material online). A plot of
the mean difference between individuals’ phenotypic and
environmental values shows a strong decline over model
time, with the rate and level of decline increasing as a function
of increasing strength of selection (supplementary fig. S9,
Supplementary Material online). Finally, logistic regressions
show no significant relationships between phenotypic and
environmental values at the outset (pseudo-R2s � 0.0, P
values > 0.1), but show highly significant relationships at
the ends of the simulations (P< 0.0001 for all values of U),
with the amounts of variation explained increasing as a func-
tion of selection strength (pseudo-R2 ¼ 0.327 for U ¼ 0.01,
0.376 for U ¼ 0.05, and 0.406 for U ¼ 0.1).

We next tested the ability of Geonomics to recreate the
genetic structure expected under local adaptation along an
environmental cline: monotonic change in the allele fre-
quency of a nonneutral locus across the cline. On a landscape
with a symmetric environmental selection gradient,
Geonomics again produced the expected spatial pattern of
local adaptation (supplementary fig. S10, Supplementary
Material online), and when we fitted sigmoid tanh clines
(Szymura and Barton 1986; Porter 2013) for all loci, the locus
underlying the monogenic trait was the only one to exhibit
clinal variation (supplementary fig. S11, Supplementary
Material online). In a family of genotype-environment analy-
ses using Bonferroni-corrected, locus-wise logistic regressions,
this locus was also the most significantly correlated with the
environmental variable based on locus-wise logistic regres-
sions (P < 0.0001). A plot of the mean difference between
individuals’ phenotypic and environmental values shows a
strong decline over model time (supplementary fig. S12,
Supplementary Material online), and logistic regressions
show no significant relationship between phenotypic and
environmental values at the outset (pseudo-R2 ¼ 0, P value
¼ 0.812) but a significant relationship at the end of the sim-
ulation (pseudo-R2 ¼ 0.169, P value < 0.0001).

Finally, we verified that Geonomics can effectively model
genomic data with physical linkage by simulating a selective
sweep, introducing a beneficial mutation at the center of a
101-locus block of otherwise neutral loci. The results exhib-
ited the classic genomic signal of a selective sweep
(Przeworski 2002; Kim and Nielsen 2004), with a region of
reduced nucleotide diversity surrounding the locus under
selection and that region gradually eroding over time (sup-
plementary fig. S12, Supplementary Material online). During
these simulations, as the beneficial mutant spread through
the population the population’s mean fitness increased from
1 � U (where U is the strength of selection) to a saturating
value of 1 (supplementary fig. S14, Supplementary Material
online), confirming that the population dynamics of the se-
lective sweep played out as expected. To further support
these results, we also validated Geonomics’ method of recom-
bination by examining effective recombination rates observed
in a Geonomics model to those produced by an msprime
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simulation using the same randomly drawn, heterogeneous
recombination map (see Recombination Test,
Supplementary Material online); the resulting genome-wide
pattern of recombination breakpoint densities recapitulates
the one produced by msprime and the true recombination
map (supplementary fig. S15, Supplementary Material
online).

Example Applications: Overview
To demonstrate the broad utility of Geonomics for modeling
complex evolutionary scenarios, we performed a series of
simulations covering a range of potential applications.
These demonstrations highlight scenarios for which
Geonomics is particularly well suited, including spatially ex-
plicit simulations on highly heterogeneous landscapes, selec-
tion on multiple traits with complex genomic architecture,
and microevolutionary responses to nonstationary environ-
mental change.

Example 1: Isolation by Distance and by Environment
Genetic covariances between individuals or populations are
often inversely correlated with linear or resistance-based geo-
graphic distance—a pattern known as isolation by distance
(IBD; Wright 1943) or isolation by resistance (IBR; McRae
2006; McRae et al. 2008)—or with environmental dis-
tance—a pattern known as isolation by environment (IBE;
Wang and Bradburd 2014). Understanding the landscape
factors and population processes generating these patterns
has emerged as a major focus of landscape genetics (Sexton et
al. 2014; Wang and Bradburd 2014).

To demonstrate how Geonomics can simultaneously gen-
erate patterns of IBD and IBE, we built a simulation that uses a
heterogeneous resistance layer as a movement surface and
models selection for a 10-gene trait on a heterogeneous en-
vironmental layer (U ¼ 0.05). The model features a species
with a stationary population size (roughly 2,450 individuals),
experiencing both selection and neutral evolution. The resis-
tance layer consists of a central barrier separating equal-area
sides—the barrier has a high resistance to movement, but the
movement is unconstrained on either side. This layer was also
used as the carrying-capacity layer, yielding homogeneous
population density on the two sides and zero density within
the barrier region. The selection layer consists of two envi-
ronmental gradients running in opposite directions on either
side of the barrier, such that the landscape contains pairs of
locations representing a range of combinations of geographic
and environmental distances.

To observe the development of population structure, we
collected data sets consisting of the genomes for all individ-
uals at timesteps 0 and 1,000. We then used principal com-
ponent analysis (PCA) to calculate pairwise genetic distances
between all individuals for each data set. To visualize popu-
lation structure, we extracted the first three principal compo-
nents (PCs) and used them as the red, green, and blue (RGB)
color values for mapping individuals on the landscape. To
visualize the outcomes of selection, we produced paired
maps of the same individuals colored by their phenotypes
for the trait under selection (using Geonomics’

“model.plot_phenotype(. . .)” method), and also created a
set of the population–structure plots using DAPC. To visual-
ize the time course of the simulation, we plotted the mean
phenotype–environment mismatch (i.e., the mean of je-zj,
the driving force of selection) and mean fitness. We visualized
signals of IBD and IBE in the final data set using a 3D scatter-
plot of Euclidean pairwise genetic distance against Euclidean
pairwise geographic and environmental distances, colored by
pairwise phenotypic distances. We tested the significance of
the relationship between genetic distance and environmental
distance, controlling for geographic distance, using paired
partial Mantel tests with the vegan package (version 2.5-6;
Oksanen et al. 2019) and using multiple matrix regression
(MMRR; Wang 2013) in R version 4.0.2 (R Core Team
2020). Finally, because Geonomics models do not use defined
landscape-resistance values, we quantified the barrier’s in-
creased landscape resistance by tracking all barrier-crossing
events, using them to calculate the per time step crossing
rate, then comparing that to the equivalent crossing rate of
the same landscape zone in an otherwise identical model that
omitted the barrier.

The RGB and phenotype plots of the initial population,
with randomly assigned genomes, showed a clear lack of both
spatial structure and local adaptation (fig. 3, top left).
However, as expected, spatial structure developed over
time, and the species showed signs of local adaptation over
the course of the simulation (fig. 3, top right), as well as a
corresponding, hierarchical population structure (supple-
mentary fig. S15, Supplementary Material online). Average
phenotype-environment mismatch decreased and average
fitness increased over time (fig. 3, top middle). At the end
of the simulation, the species demonstrated significant signals
of both IBD (partial Mantel test: r¼ 0.560, P� 0.001; MMRR:
P� 0.001) and IBE (partial Mantel test: r¼ 0.121, P� 0.001;
MMRR: P� 0.001; MMRR full model R2 ¼ 0.354), as evi-
denced by the positive slopes on both horizontal axes of
the 3D scatterplot (fig. 3, bottom). The colors of the points
in the 3D scatter plot also indicate a clear pattern of increas-
ing phenotypic differences between individuals with increas-
ing environmental distance (fig. 3, bottom right) but not
between individuals separated by increasing geographic dis-
tances (fig. 3, bottom left). Finally, the barrier zone had an
observed crossing rate of 0.004 individuals per time step in
this model, 13 times lower than the rate of 0.052 individuals
per time step observed in the barrier-less but otherwise iden-
tical model. These results show that Geonomics effectively
models IBD and IBE, driven by divergent natural selection,
using two simple raster layers. More complex layers could
be used to simulate IBD and IBE under a wide range of sce-
narios, and empirical layers could be used to simulate pat-
terns of spatial genetic variation on real-world landscapes.

Example 2: Simultaneous Election
One of the most powerful features of Geonomics is that it can
simulate selection on numerous traits simultaneously, each
responding to a separate selection layer. Thus, a simulated
species can experience multiple spatial selection regimes.
Many natural systems are locally adapted to multiple
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environmental variables (Fournier-Level et al. 2011; Lasky et al.
2012; Manel et al. 2012), so simulating these scenarios could
be broadly valuable for investigating the nature of local ad-
aptation in real environments.

To demonstrate how Geonomics can model simultaneous
selection, we simulated a scenario in which a species under-
goes natural selection along two orthogonal environmental
gradients, each driving selection for a separate trait (U ¼
0.05). Each trait had values ranging from 0 to 1, determined
by 10 loci, all with equal effect sizes. Individuals had a mean
movement distance of 0.5 cell widths on a 50� 50-cell land-
scape, chosen to limit gene flow and allow for the develop-
ment of strong spatial structure and, thus, the potential for
local adaptation. We let the system evolve for 1,000 time
steps and then mapped the species on each of the environ-
mental layers, with individuals colored by phenotype in order
to visually evaluate whether individual phenotypes matched
their environmental backgrounds. The results showed clear
patterns of phenotype–environment matching along both
independent gradients (fig. 4) that evolved steadily through
time (supplementary fig. S16, Supplementary Material online;
compare to supplementary figs. S17 and S18, Supplementary
Material online, with U ¼ 0), indicating strong evidence for
simultaneous selection across the simulated landscape.

Example 3: Polygenic Adaptation to Climate Change
in the Yosemite Region
Better understanding evolutionary responses to changing
environments is essential for predicting species outcomes
and preserving biodiversity under ongoing climate change
(Hoffmann and Sgr�o 2011; Franks and Hoffmann 2012; Bay
et al. 2018; Capblancq et al. 2020). In many regions, climate
shifts are projected to be spatially heterogeneous, including in
montane regions where cooler, higher-altitude areas are
warming more quickly than warmer, low-altitude regions
(Rangwala et al. 2013; Mountain Research Initiative EDW
Working Group 2015; but see Oyler et al. 2015). Of particular
interest under these scenarios is the ability of species to adapt
to changing local conditions (Franks and Hoffmann 2012).

To demonstrate the utility of Geonomics for studying mi-
croevolutionary responses to climate change, we simulated
the response to projected climate change of a continuously
distributed, locally adapted species, using the sagebrush lizard
(Sceloporus graciosus) in the topographically complex
Yosemite National Park region of California (USA) as an em-
pirical model. To model climate change, we assembled time
series raster stacks of projected mean annual temperature,
annual precipitation, and habitat suitability for 19 even time
steps from the present through the year 2100. For present
temperature and precipitation, we used PRISM data (Daly et
al. 2008), calculated as 30-year normals for 1981–2010 at 800
m resolution. For future years, we used means at a set of 5-
year intervals (2015–2100), downscaled to 6 km resolution
using the localized constructed analogs downscaling tech-
nique (LOCA; Pierce et al. 2014), from the Cal-Adapt database

FIG. 3. Results of simulations for the isolation by distance (IBD) and
isolation by environment (IBE) example application, in which a spe-
cies evolved on a landscape with a barrier layer that served as the
movement surface (displayed as a vertical gray band down the land-
scape) and an environmental layer that served as the selective surface
for a 10-locus trait (displayed as the red to blue gradient on the
landscape). (A) The population before the simulation (left column)
and after it (right column), colored by genetic distance (top row),
with colors derived from scores on the first three PCs of a genetic PCA
used to assign RGB values, and by phenotype (bottom row). The
most-fit individuals are those whose phenotypic colors perfectly
match the cells on which they are located. (B) The time courses of
the mean difference between individuals’ phenotypes and their en-
vironmental values (blue) and of mean fitness values (red). (C) Two
views of a 3D scatter plot of pairwise genetic distance as a function of
Euclidean geographic distance (left) and Euclidean environmental
distance (right), with points colored by phenotypic distance.
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(https://cal-adapt.org/). We calculated means of both varia-
bles from their minima and maxima observed across 32 global
climate models, using a conservative representative concen-
tration pathway (RCP 4.5). We developed time series of future
temperature and precipitation layers at 800-m resolution by
1) calculating the raster difference between the first projected
year and the current data, aggregated to the projected data’s
resolution; 2) adding that difference to the current data, such
that each cell in the current data received the difference of
the coarser, projected cell within which it lay; and 3) repeating
that process for all remaining years. All data preparation was
done using custom scripts (Supplementary Material online)
in R (R Core Team 2020).

For the habitat suitability rasters, we constructed a species
distribution model (SDM) using the present-day temperature
and precipitation variables. We downloaded all georeferenced
S. graciosus occurrence data from the Global Biodiversity
Information Facility database (www.gbif.org), using the gbif
function in the dismo R package (Hijmans et al. 2017). We
clipped the points to California and Nevada, then subsampled
the full data set to remove multiple points within the same
raster cells. We generated pseudoabsence data by drawing
random points from all cells in the California-Nevada region
where the species was not observed (following the recom-
mendations of Barbet-Massin et al. 2012). We extracted the
current temperature and precipitation data at these points
and used them as predictor variables in a binomial general-
ized linear model (GLM) with a logit link. We then projected
that GLM onto the current and future temperature and pre-
cipitation rasters for our study region, producing a time series
of predicted habitat suitability.

We generated the simulation’s parameters file using the
code provided in Code Sample S1, then edited the parameter
values therein as needed. To simulate the nonneutral evolu-
tion of a polygenic, quantitative trait, we set the trait to be
underlain by 100 loci randomly distributed across a genome

of 1,000 loci and set a strength of selection of U¼ 0.5. We set
other life-history and demographic parameters (carrying ca-
pacity, age at reproductive maturity, number of offspring per
individual, and maximum age) to reasonable values based on
S. graciosus natural history (Stebbins 1948; Tinkle 1973; Rose
1976; Ruth 1978; Tinkle et al. 1993; Supplementary Material
online).

We ran the main phase for 500 time steps without climate
change (to develop a pattern of local adaptation), then ran an
additional 100 time steps (years) with changing climate (see
Code Sample S2). At time steps 500 (before the initiation of
climate change events) and 600 (after completion of climate
change events), we plotted the current temperature and
habitat-suitability landscape layers along with a kriged surface
of the current population’s phenotypes and a kernel density
map of the current population’s density, two key emergent
properties of the model that should be driven by temperature
and habitat suitability, respectively. We then ran the model
for an additional 50 timesteps to be able to more clearly
visualize the effect of climate change on population size.

The model generated a clear and realistic pattern of adap-
tation to the spatial temperature gradient in the Yosemite
region after the 500 iterations following burn-in, and that
pattern demonstrated a spatial shift in phenotypes that aligns
clearly with the spatial shift in temperature under the simu-
lated climate change scenario (fig. 5A, rows 1 and 2; Video 1,
Supplementary Material online). The model also generated a
spatial pattern of population density that clearly aligns with
spatial variation in habitat suitability prior to the onset of
climate change that likewise shifted as expected in response
to the climate change-induced shift in habitat suitability (fig.
5A, rows 3 and 4). We observed demographic changes in
response to climate change over the course of the simulation
as well. After climate change, mean population size was re-
duced by roughly 16.8% (from about 255,500 to 212,500 indi-
viduals), in line with the 17.9% reduction in the carrying

FIG. 4. Results of simultaneous selection on two traits with spatially distinct selective regimes. Each trait is controlled by 10 unlinked loci and has a
selection coefficient of U ¼ 0.05. Individuals are colored by phenotype for the trait under selection on each layer.
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capacity layer derived from the habitat suitability rasters
(from 337,089.0 to 276,742.8 individuals, according to sums
of the pre- and post-change carrying capacity layers). The
population also exhibited sizable fluctuations during the cli-
mate change period, with oscillations exceeding 60,000 indi-
viduals (roughly 23.5% of the pre-change mean population
size; fig. 5B). We interpret this as a result of the stepwise
environmental changes comprising the climate change event.
Each change causes a shift in the optimum phenotypes of
local populations, leading to increased maladaptation and
thus increased mortality rates. Subsequent reductions in
density-dependent mortality rates because of these reduced
population densities, paired with adaptation by natural selec-
tion, then reduce overall mortality rates, leading to rebounds
in population size, with stochastic movement into and out of
local populations, along with other sources of model stochas-
ticity, imposing noise on this oscillatory behavior. Overall,
these results show how Geonomics can effectively simulate
organismal responses to highly complex environmental sce-
narios and reveal that these simulations can uncover system
behavior that could provide avenues for future investigation.

Discussion
Our validations tests demonstrate that Geonomics simulates
molecular evolution in concordance with predictions from
theoretical population genetics (Fisher 1923; Wright 1943;
Kimura; Szymura and Barton 1986), including dynamics of
genetic drift, migration, and selection along clines, and our
example applications show that Geonomics is capable of
generating accurate and realistic population and landscape
genomic data sets under scenarios of varying complexity.
Geonomics is embedded in Python (van Rossum 1995;
Python Software Foundation 2019), one of the most popular
programming languages and one already familiar to many
researchers who use bioinformatics. It makes the creation
of arbitrarily complex models quick and easy, without even
requiring prior Python experience, yet provides advanced
users with access to core data structures, enabling broad cus-
tomization and extension.

Many theoretical questions in population genomics neces-
sitate explicitly spatial study methods, often with full tracking
of a population’s spatial pedigree (Bradburd and Ralph 2019).
Geonomics makes this work more tractable than ever before.
Landscape genomics studies draw conclusions about com-
plex, real-world systems, sometimes with direct implications
for conservation and management (Epperson et al. 2010;
Landguth et al. 2012). Geonomics not only enables the gen-
eration of simulated data sets specific to such study systems

FIG. 5. Polygenic adaptation to climate change in the Yosemite region.
(A) Hillshade plot comparisons of key variables (mean temperature,
phenotype, habitat suitability, and population density) before and
after the simulated climate change event. The mean of each variable
through time is used to draw midvalue contours on each map (white
lines) to help visualize spatial change. As expected, the spatiotempo-
ral shift in temperature (first row) drives a spatially corresponding

shift in phenotypes, visualized as a surface kriged from all phenotypic
values (second row), and the shift in habitat suitability (third row)
likewise drives a corresponding shift in population density, visualized
using a 2D kernel density estimator (fourth row). (B) The time course
of population size. The early drop in population size results from the
onset of natural selection after completion of the unplotted burn-in
portion of the model. The oscillations and ultimate reduction at the
end of the simulation are a result of the climate change event, which
occurs during the period bracketed by vertical red lines.
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but will also aid the development and testing of analytical
methods in landscape genomics, strengthening our ability to
draw accurate and reliable inferences from real-world data.

Runtime and Memory
Geonomics models run more slowly and have steeper mem-
ory limitations than models written and optimized in com-
piled languages, such as SLiM (Messer 2013; Haller and Messer
2017; Haller and Messer 2019). However, for users whose
scenarios are well served by the design and affordances of
Geonomics, what is sacrificed in runtime will be made up for
in flexibility, customizability, and ease of use. With a reason-
ably powerful computer and for moderately sized models,
most users should not find runtime or memory a major lim-
itation. Indeed, our first two example applications were run
on a laptop computer with 8 GB of RAM and an IntelV

R

CoreTM i5-8250U 3.4 GHz quad-core processor. Each run
took an average of 271 s (about 0.27 s per time step) for
the IBD-IBE model and 144 s (roughly 0.14 s per time step)
for the simultaneous selection model. Because the polygenic
adaptation example has much higher complexity, approxi-
mating the high population density of a small vertebrate,
we ran it on a regular-memory node of a computing cluster
(the savio3 partition of UC Berkeley’s Savio system) with 96
GB RAM and 2.1 GHz Skylake processors in order to handle
the larger memory requirement. This model took consider-
ably longer to run (approximately 7.35 h, running at about
32 s per time step after time for upfront computation of a
series of changing movement surfaces) and had a peak mem-
ory usage of 25.433 GB, but even highly complex scenarios like
this remain tractable on reasonable research timelines.

Given the complexity of Geonomics and the number of
parameters a user can modify, numerous parameters and
parameter combinations can influence a model’s average
runtime. We provide a basic runtime analysis (fig. 6), run
on the same 8 Gb, quad-core laptop as the examples above.
This analysis highlights some basic parameters that are likely
to influence a model’s average runtime per time step, includ-
ing the mean population size (as determined by an array of

local carrying capacities), the number of offspring per mating
event, the size of the landscape, and the number of non-
neutral loci in the genome. The effect of landscape size pre-
dominates, as runtime scales superlinearly with this
parameter. The number of nonneutral loci actually has only
slight effects on total runtime, and because neutral genetic
data are stored in a set of tables rather than redundantly for
each individual (Kelleher et al. 2018) runtime is even less
sensitive to the number of neutral loci in the genome (al-
though recombination rate does impact runtime and mem-
ory usage), meaning that Geonomics can efficiently simulate
genome-scale data sets if provided adequate memory to store
the set of recombination pathways that is calculated at the
outset. Finally, after the upfront cost of computing recombi-
nation pathways and movement surfaces, runtime scales
roughly linearly with the number of time steps, barring large
demographic changes. That means that the moderately com-
plex scenario in our simultaneous selection example could
complete 1,000,000 time steps in approximately 40 h, and
even the highly complex scenario in our polygenic adaptation
example with more than 200,000 individuals could run
through 10,000 generations in about 3.7 days. Hence,
Geonomics could even prove useful for research at deeper
timescales, for example in phylogeography or geogenomics
(Baker et al. 2014).

Caveats
Geonomics uses two unconventional approximations to
make complex models tractable within reasonable compute
time in an interpreted language. The first is the approxima-
tion used to model heterogeneous recombination. Enacting
recombination between all neighboring loci each time a gam-
ete is produced would require an extremely large and time-
consuming number of random draws. To avoid this, when a
model is first created, Geonomics generates and saves, as
binary arrays, a large collection of recombination “paths.”
The number of paths used is set by the user, and directly
determines the minimum recombination rate difference that
can be modeled. Each path is just a genome-length array that

FIG. 6. Average runtime as a function of four major parameters: the number of nonneutral loci (n_loci), the carrying-capacity constant (K) that
determines mean population size, landscape size (dim), and the k parameter of the Poisson distribution from which the number of offspring in
each mating event is drawn (lambda). Runtime increases with landscape dimension both because of functions whose runtimes scale with the
landscape size directly and because of functions whose runtime scales with total population size. The difference between the lines for K and dim
can be taken as an indication of the runtime cost of landscape dimension above and beyond population size effects, which predominates because it
is superlinear.
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switches between 0 and 1 at each interlocus position where a
recombination event should occur. The path can then quickly
be used to subset an individual’s genome, producing a gam-
ete. As a model runs and gametes are continually produced,
these paths are repeatedly shuffled and drawn through, like a
deck of cards during multiple rounds of a game. This ap-
proach, which we have validated using msprime (see
Recombination Test, Supplementary Material online), can
lead to memory limitations for models with a large number
of paths and a long genome, because the data structure
containing the paths is essentially a 2D binary array whose
size is the product of these values and because more recom-
bination events require that more trees are recorded in the
spatial pedigree. To avoid these problems, for genomic archi-
tectures with homogeneous recombination rates, Geonomics
provides the option to use an alternative recombination
mechanism that simulates recombination on the fly for
each new gamete but does so at a cost of increased average
runtime per time step.

The second is the approximation used to model the cir-
cular distributions from which movement directions are
drawn. Conceptually, a movement or dispersal surface is an
x� y array of Von Mises distributions. In practice, each
distribution on that surface is represented by a column of
angular directions (an “approximation column”) drawn, at
the time the model is built, from the true, continuous distri-
bution. During a model run, to draw a movement direction
from a cell, a random value is sampled from that cell’s ap-
proximation column. This increases computational efficiency
by avoiding large numbers of calls to random number gen-
erators during runtime. The accuracy of these approximation
columns is a function of their length, which is set by the user.
This length will usually not be so constrained that it signifi-
cantly impacts the accuracy of the approximation, but such a
constraint could arise if the movement or dispersal surface
undergoes environmental change. In this case, the movement
surfaces corresponding to each step of the change event will
be generated and stored when the model is first created, and
the series of arrays produced could exhaust memory if the
landscape is very large and has many environmental change
steps. A solution to this problem would feature some com-
bination of decreasing the temporal resolution of the envi-
ronmental change event, decreasing the landscape size, or
decreasing the approximation column length. In all cases,
users may check the accuracy of modeled movement by using
built-in functions that visualize the composition and behavior
of movement and dispersal surfaces.

Materials and Methods
We performed all simulations using the Geonomics Python
package (see New Approaches) as described in the Results
section and Supplementary Material. The simplest way to get
started with Geonomics is to install it via pip. Geonomics uses
common, well-established Python packages as required de-
pendencies—Numpy (Harris et al. 2020), Matplotlib (Hunter
2007), Pandas (McKinney et al. 2010), Shapely (Gillies et al.
2007), Scipy (Virtanen et al. 2020), Scikit-learn (Pedregosa

et al. 2011), Statsmodels (Seabold and Perktold 2010),
Rasterio (Gillies et al. 2019), Bitarray (Schnell et al. 2021),
msprime (Kelleher et al. 2016), and tskit (Kelleher et al.
2018)—and offers optional integration of neutral landscape
models through the NLMpy package (Etherington et al. 2015).
The source code is publicly available on GitHub (https://
github.com/drewhart/geonomics), where it is actively main-
tained and developed.

Conclusions
Geonomics is a Python package designed to make building
and running complex landscape genomic models quick and
simple. At the same time, it provides a flexible scripting frame-
work that allows advanced users to customize and extend its
functionality. We believe Geonomics will prove highly useful
for theoretical, empirical, methodological, and applied re-
search in population and landscape genomics, molecular
ecology, global change biology, and conservation.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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(https://pypi.org/project/geonomics/) using pip, and the
Geonomics source code is available in the Geonomics
GitHub repository (https://github.com/drewhart/geonom-
ics). Parameterizations for all simulations run for this study
are stored in their respective directories in the source code
repository, and other associated data (e.g., raster layers) are
available in the ./data directory of a local Geonomics
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installation. Ancillary code used for the preparation of simu-
lations and execution of analyses for this paper live in a sep-
arate GitHub repository (https://github.com/drewhart/
geonomics_methods_paper_ancillary_code). Validations
tests can be run using the code provided in the respective
directories in the source code repository. Demo simulations
can be run by loading the Geonomics package into Python
and then calling the run_demo function (e.g., “import geo-
nomics as gnx; gnx.run_demo(‘IBD IBE’)”). Using those mate-
rials, readers can reproduce stochastically varying but
qualitatively equivalent results as those presented in this
article.
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 6 

Validation Tests 7 

 Full details and reproducible code and parameter files for each of our validation tests are 8 

available from the ‘/tests/validation/’ subdirectory of the source code. We discuss the key details and 9 

results of these tests below. 10 

 11 

Wright-Fisher test: genetic drift 12 

The Wright-Fisher model of genetic drift models a fixed-size haploid population that turns 13 

over completely at each timestep (i.e. generation). The population can have any number of 14 

independent, biallelic genetic loci. For each locus, each generation’s allele frequency is chosen as a 15 

binomial random variable, with the number of trials equal to the population size and the probability 16 

of success (i.e. of drawing the ‘1’ allele) equal to the previous generation’s ‘1’-allele frequency. The 17 

mean persistence time for an allele (i.e. the expected number of generations for which a locus 18 

remains segregating) is:              19 

                                                   (S1), 20 

where    is the number of alleles in the population (such that  can represent the diploid population 21 

size) and  is the frequency of an allele at the locus (Fisher, 1923; Hartl and Clark, 2007; Wright, 22 

Sewall, 1930). 23 

The Wright-Fisher model is much simpler than the sorts of models for which Geonomics is 24 

designed (as are all of the following validation tests)—it is aspatial, panmictic, features fixed 25 

population sizes, and models only neutral loci. Thus, we parameterized Geonomics so as to 26 

approximate the model as closely as possible. To emulate aspatiality and panmixia, we used a 27 

population on a homogeneous landscape, using isotropic movement, with movement and dispersal 28 

distributions that broadly encompass the diagonal width of the landscape, and with no mating radius 29 

imposed (to allow panmixia) instead of local mating (i.e. with the mating radius set to ‘None’). To 30 

enforce complete generational turnover, we set the maximum-age parameter to 1 (i.e. 1 timestep). 31 
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While Geonomics does not maintain constant population size, we maintained the carrying-capacity 32 

raster at a constant, uniform value, thus maintaining a stationary mean population size. We simulated 33 

250 independent neutral loci (by setting all inter-locus recombination rates to 0.5), with starting ‘1’-34 

allele frequencies of 0.5 (although the actual starting frequencies vary slightly around this value 35 

because of sampling error when all individuals’ genotypes are drawn binomially). 36 

We ran the Wright-Fisher approximation test for three values of the carrying-capacity raster 37 

(i.e. three values of ‘K_factor’), hence for three mean population sizes (708, 1564, and 2440 38 

individuals). For each mean population size (calculated as the harmonic mean, to account for 39 

stochastic fluctuations around the carrying capacity), we compared mean persistence time to that 40 

expected by theory, according to equation S1. Figures S1 and S2 show that the results are a close 41 

match to the theoretical expectations. 42 

 43 

Bottleneck test: population dynamics 44 

Because drift is a stronger evolutionary force in smaller populations, drift accelerates in 45 

shrinking populations. If a population undergoes a bottleneck event, the overall effect of drift on the 46 

population during that time is expected to be larger than what a constant-size population of 47 

equivalent starting size would experience during that time. Thus, mean fixation time should decrease 48 

in a bottlenecked population relative to one of constant size. 49 

As with the Wright-Fisher model, to test the effectiveness of Geonomics for modeling a 50 

population bottleneck we used a homogeneous landscape with broad distributions for movement and 51 

dispersal and without a mating radius in order to emulate aspatiality and panmixia. To simulate a 52 

bottleneck event, we created a custom change event in which the population’s carrying-capacity 53 

raster is reduced to 30% of its initial value for 50 timesteps (from the 200th to 250th), then returned 54 

to its initial value for the remainder of the simulation (through the 300th timestep). These simulations 55 

produced a clear signal of accelerated drift during the bottleneck event, with the mean rate of allele-56 

frequency change, calculated in 15-timestep sliding windows, nearly tripling during the period of the 57 

bottleneck (Figure S3). 58 

 59 

Stepping stone test: population subdivision and genetic differentiation 60 

The stepping-stone model, or one-dimensional island model, is a spatially implicit model. It 61 

models a series of subpopulations arranged along a straight line, with migration between all 62 
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neighboring pairs. As a combined result of divergence by drift and homogenization by effective 63 

migration, subpopulations are expected to reach a stationary level of genetic differentiation: 64 

migration-drift equilibrium. Theory provides the expected pairwise genetic differentiation between a 65 

pair of subpopulations at equilibrium as:    66 

    
 

     
         (S2), 67 

where   is the population size and   is the per-generation migration rate, such that    can be 68 

interpreted as the per-generation number of migrant individuals (Hartl and Clark, 2007). 69 

To approximate the stepping-stone model, we created a Landscape Layer with a diagonal of 70 

six equally spaced, equal-sized islands (1.0-valued cells) embedded in a ‘sea’ of 0.0-valued cells. We 71 

used this layer as the carrying-capacity raster (Figure S4, left). We parameterized dispersal to be very 72 

near to parents’ midpoints, movement distance to be strongly right-skewed, such that the long-73 

distance movement events leading to migration are uncommon, and the mating radius to a value that 74 

makes island populations effectively panmictic but that prohibits mating between individuals on 75 

separate islands. Genomes contained 100 neutral loci, and we ran the simulation for 5000 timesteps. 76 

Because Geonomics does not model discrete populations, it does not stipulate migration rates 77 

between discrete locations on the landscape. Thus, we manually tracked the number of migration 78 

events during each timestep for all possible directional migration events (i.e. for all permutations of 79 

island pairs), then used that data to calculate all mean migration rates. With those values, we solved 80 

equation S2, then compared the resulting    expectations to the observed values (calculated from the 81 

simulated data using two common methods; Figure S4, right). We also used Discriminant Analysis of 82 

Principal Components (DAPC), performed in the R package adegenet (Jombart et al. 2008), to 83 

visualize population structure.  84 

The results demonstrate that the model approached migration-drift equilibrium, as expected 85 

by theory (Figure S5), with all island populations reaching dynamic equilibria around the same mean 86 

size. Estimated migration rates and    values qualitatively match theoretical expectations: mean 87 

migration rate drops off precipitously at greater than one step-distance apart, and genetic 88 

differentiation increases to approximate saturation. Values of    consistently undershoot the values 89 

expected based on estimated migration rates, however, because subpopulations have yet to approach 90 

fixation at most loci (which is the expectation implied by expected    values close to 1). DAPC 91 

demonstrated that the simulation generated the expected population structure of six distinct clusters, 92 

one per island (Figure S6). 93 
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Contrasting-habitat test: divergent selection 94 

In a population divided between two, divergent selective environments, if there is standing 95 

genetic variation for a biallelic locus controlling the trait adapting to those environments then theory 96 

predicts that the two subpopulations will diverge at that locus as each moves toward its respective 97 

adaptive peak. The rate at which divergence should occur depends on the relative strengths of two 98 

opposing evolutionary forces: natural selection, which causes divergence, and gene flow, which 99 

causes homogenization. The rate of allele frequency change in either subpopulation at timestep t is 100 

expressed as: 101 

   
              

           
    

            (S3), 102 

where  and  are the frequencies of the beneficial and deleterious alleles in the local subpopulation, 103 

 is the selection coefficient against the homozygous recessive phenotype,  is the degree of 104 

dominance of the recessive allele, mi and mo are the migration rates into and out of the subpopulation 105 

being analyzed, and   is the frequency of the locally deleterious allele in the alternative 106 

subpopulation where it is beneficial (Hartl and Clark, 2007). 107 

This model, like the stepping-stone model, is spatially implicit. To approximate this, we 108 

created a landscape with two layers. The first was divided into two equal-sized halves, one valued at 109 

0.0, the other at 1.0; this layer was used as the layer driving natural selection. The second was valued 110 

uniformly at 1.0; this was used as the carrying-capacity raster (thus setting uniform population 111 

density across the landscape and determining, in sum, the overall carrying capacity of the landscape). 112 

We created one monogenic trait whose position was randomly chosen within a genomic architecture 113 

of 100 unlinked loci. We ran the model for 1000 timesteps for each of three values of the parameter ɸ 114 

(identical to s in equation S3): 0.1, 0.05, and 0.01. Given that Geonomics does not directly define a 115 

migration rate parameter, we tracked the number of migration events (i.e. individuals crossing the 116 

landscape’s horizontal midline) during each timestep, then used that data to solve equation S3. 117 

Results depict clear local adaptation to each of the two halves of the landscape, with spillover 118 

of opposite phenotypes and resulting heterozygote births occurring along the border between the two 119 

habitats (Figure S7). Allele trajectories in each half of the environment follow qualitatively the 120 

increasing and saturating trajectories expected by theory, but reach consistently more divergent allele 121 

frequencies than expected based on the theoretical calculation (Figure S8). However, these results are 122 

an easily understandable artefact of estimating a spatially implicit, population-based model using a 123 

spatially explicit, individual-based one—our method of calculating migration rates includes all 124 
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individuals who cross the habitat boundary, including the large number who only barely cross and 125 

who may even quickly migrate back, such that expected allele-frequency trajectories are based on an 126 

overestimation of true gene flow and thus serve as lower bounds on the real trajectories.  As further 127 

validation, a plot of the mean difference between each individual’s phenotypic and environmental 128 

values shows a strong decline over model time, with the rate and level of decline increasing as a 129 

function of increasing strength of selection (Figure S9). Moreover, logistic regressions show no 130 

significant relationships between phenotypic and environmental values at the outset (pseudo-R2s ≈ 131 

0.0, p-values > 0.1) but show highly significant relationships at the ends of the simulations (p < 132 

0.0001 for all values of ɸ), with the amounts of variation explained increasing as a function of 133 

selection strength (pseudo-R2 = 0.327 for ɸ = 0.01, 0.376 for ɸ = 0.05, and 0.406 for ɸ = 0.1). 134 

Cline test: local adaptation 135 

In a clinal model, a population adapts locally across an environmental gradient, which is 136 

characterized by the extremes of its environmental values and its steepness (i.e. the instantaneous rate 137 

of environmental change along it). Local adaptation across this gradient will generate a geographic 138 

cline in allele frequencies. The clinal pattern is only expected for loci under selection along the cline 139 

(and other loci in linkage). Unlinked loci have no long-term clinal expectation (though they could 140 

initially be swept along with the selective locus, and any number could continue to show spurious 141 

concordant clinal variation). To detect clinal adaptation, we can fit cline curves to the allele-142 

frequency variation across the environmental gradient for all loci, with the expectation that the clines 143 

fit to adaptive loci will mirror the gradient. Numerous equations have been used to fit clines, but one 144 

of the most common is the sigmoidal tanh function: 145 

   
 

 
     

      

 
          (S4),  146 

where   is the frequency of the reference allele at position   along the cline,   is the centerpoint of 147 

the cline (such that         ), and   is the ‘width’, which is defined as   
 

     
 at point   148 

(Porter, 2013). 149 

To implement the cline model in Geonomics, we created a landscape with two layers. The 150 

first layer was an environmental layer—a symmetrical, non-linear gradient between 0-valued and 1-151 

valued halves (Figure S10). The second was a uniformly valued habitat-quality layer, used to set a 152 

uniform population density and thus determine the global carrying capacity. We created a monogenic 153 

trait whose locus was randomly placed within a genomic architecture of 100 independent loci. The 154 
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trait had a ɸ of 0.01, with the gradient layer serving as its selective force. We ran the cline model for 155 

1500 timesteps, then used a numerical optimization function (in Python’s scipy package; Jones et al., 156 

2001) to fit equation S4 for all loci. We plotted all fitted clines on top of the first landscape layer, 157 

with the cline for the single selective locus highlighted. The selective locus consistently and clearly 158 

stands out as the only locus with a cline matching the expectation of a monotonic pattern mirroring 159 

the environmental gradient and spanning nearly the full range of phenotypic values (Figure S11).  160 

Results clearly show a pattern of clinal adaptation across the landscape—despite isolated 161 

patches of maladaptive genotypes potentially resulting from occasional long-distance migration 162 

events—with a zone of admixture and phenotypic spillover surrounding the cline’s center (Figure 163 

S10). In a Bonferroni-corrected family of locus-wise logistic regression models of environmental 164 

value on genotype, the selective locus consistently stands out as the most significant (p-values of 165 

roughly 3x10-100). Furthermore, a plot of the mean difference between phenotypic and environmental 166 

values shows a strong decline over model time (Figure S12), and logistic regressions show no 167 

significant relationship between phenotypic and environmental values at the outset (pseudo-R2 = 0, 168 

p-value = 0.370) but a significant relationship at the end of the simulation (pseudo-R2 = 0.345, p-169 

value < 0.0001). 170 

 171 

Selective sweep test: genetic hitchhiking 172 

Genomic architecture and linkage add important complexity to models of molecular 173 

evolution. The most basic model of selection with linkage is that of a selective sweep: a beneficial 174 

mutation occurs in a population, falling on a random genomic background, then rises in frequency 175 

because of its selective advantage until it becomes fixed, pulling up the frequency of the surrounding 176 

haplotype block in the process. The haplotype block is, nevertheless, subject to recombination, which 177 

gradually erodes it symmetrically around the beneficial mutation. Thus, the selective-sweep model 178 

predicts that once a beneficial mutation occurs —as long as it is not lost early on by chance— it and 179 

the haplotype block around it will rise in frequency, the mutation will eventually fix, potentially with 180 

some core block around it, and the rest of the block will erode over time. The haplotype block should 181 

be clearly visible in genomic data, where it will manifest as a genomic region of reduced diversity 182 

and heterozygosity centered on the mutation. 183 

To implement the selective sweep model in Geonomics, we again created a model 184 

approximating an aspatial, panmictic population (see Wright-Fisher test for details). We created a 185 
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single, monogenic trait with a ɸ of 0.1. The trait’s locus was manually set to position 500, such that it 186 

was at the center of the 1001-locus genome. The genome had a homogeneous recombination rate of 187 

0.001 between all neighboring loci. We manually set the starting ’1’-allele frequency at this locus to 188 

0.0 but set the trait to be selected upon by a uniform layer of 1 values, such that all individuals began 189 

the model equally unfit (i.e. with a fitness value of        ). After burn-in, we iteratively chose 190 

a random individual, introduced a ‘1’-mutation in its genome at locus 50, ran the model for 50 191 

timesteps, and checked whether the ‘1’ allele had reached a frequency greater than 0.05 by that time. 192 

We iterated until that check was passed, at which point we declared the mutant allele ‘established’ 193 

and continued to run the model until 2500 timesteps after the novel mutation reached fixation. At 194 

three timepoints during that model we calculated and recorded genome-wide nucleotide diversity 195 

using a sliding-window approach. 196 

We found that Geonomics successfully and realistically simulated the behavior of a selective 197 

sweep. The first adaptive mutant that was not immediately lost by drift rose rapidly in frequency, 198 

then fixed. The population’s mean fitness increased quickly from 0.9 (the universal fitness value 199 

before the mutation was introduced) to 1.00 (the universal fitness value after the sweep was 200 

complete; Figure S14). The linkage block around the selected locus became a region of depressed 201 

nucleotide diversity (Figure S13, top row) and heightened linkage (Figure S13, bottom row) ⁠— the 202 

classic signature of a selective sweep. 203 

 204 

Recombination test 205 

To provide additional validation of Geonomics’ recombination model, we compared the 206 

effective recombination rates observed in a Geonomics model to those produced by an msprime 207 

simulation using the same recombination map. We produced a recombination map by assigning 999 208 

random, interlocus recombination rates to a 1000-length simulated genome. We drew the rates by 209 

taking the first 999 values ≤ 0.5 from a random vector drawn from the distribution ~Beta(0.4, 1.3), 210 

producing a left-skewed distribution that nonetheless sampled the full range of physical linkage 211 

values. We ran an msprime model using the msprime.RecombinationMap object created from those 212 

values and also ran a Geonomics model using those values as the recombination-rate column in a 213 

Geonomics custom genomic architecture file. We then plotted the true recombination rates and the 214 

observed breakpoint densities from both models, binned within even-width genomic windows. The 215 

results show that Geonomics’ observed breakpoint densities recapitulate the true recombination rates 216 
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just as closely as do those of msprime (Figure S15). 217 

 218 

Applications 219 

Example 3: Polygenic adaptation to climate change in the Yosemite region 220 

To build this simulation, we first generated a template Geonomics parameters file (using the 221 

Geonomics function ‘gnx.make_parameters_file(…)’), then edited it to best emulate our empirical 222 

study system (see Code Sample S1). This created a parameters file for a simulation with: (1) three 223 

empirical layers  mean temperature, precipitation, and habitat suitability), two of which (temperature 224 

and habitat suitability) have environmental change events; (2) one species, with one trait adapted to 225 

mean temperature; and (3) a data collection design. We set life-history parameters to reasonable 226 

approximations of S. graciosus biology, based on available literature. We set spatial parameters 227 

based on the relationship between the resolution of the environmental rasters and the characteristic 228 

scales of S. graciosus key life-history traits. The resolution of the rasters is 0.00833°, which at 229 

latitude 38° is equal to about 730.984 m in the east-west direction and 927.296 m in the north-south 230 

direction, giving each cell a total area of roughly 6.78 × 105 m2 (67.8 hectares). Using a population 231 

density of 208 individuals per hectare (Tinkle, 1973) and the rough estimate that about 10% of the 232 

land area covered by our study contains the open habitat favored by S. graciosus rather than the more 233 

closed habitat favored by the congener S. occidentalis, with whom it experiences a large degree of 234 

competitive exclusion (Rose 1976), we chose a per-cell carrying capacity (parameter ‘K_factor’) of 235 

67.8 hectares/cell × 208 individuals/hectare × 0.1 proportion of habitat suitable  ≈ 1410 individuals 236 

(which we then further multiplied by 0.1 for computational tractability). We set the reproductive age 237 

to 2 years (Tinkle, 1973; Tinkle et al., 1993). We left the sex ratio at unity, given controversy in the 238 

literature about whether or not it skewed toward females because of lower male survival rates 239 

(Tinkle, 1973; but see Tinkle et al., 1993). We set the number of births per individual to be a Poisson 240 

random variable with lambda = 4.464 individuals/clutch × 2 clutches/year × 0.16 survival rate = 241 

1.428, based on an average clutch size of 4.464 across surveyed California populations (Tinkle et al. 242 

1993), an average of 2 clutches per year (Tinkle, 1973; Tinkle et al., 1993), and an average rate of 243 

survival to the first year of 0.16 (Ruth, 1978). We estimated the mean interannual movement distance 244 

as 12.457 m (expressed as 0.01704 cell widths), based on an average of all recorded interannual 245 

movement events in Stebbins’ (1948) study of S. graciosus home ranges. We used this as an order-246 

of-magnitude estimate for movement, but increased parameters slightly above this value in order to 247 
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pair the reduced population density we chose for purposes of computational tractability. Thus, we set 248 

a mating radius value of 0.5 cell widths, and parameterized movement and dispersal as 249 

‘~Lognormal(7x10-5, 0.3)’ and ‘~Lognormal(7.5x10-4, 1),’ respectively. In the absence of any known 250 

published estimates, we set the population intrinsic growth rate to 0.5.  The full code to perform this 251 

analysis is available as Code Sample S2 and in the Yosemite demo script, included in the Geonomics 252 

package. 253 

 254 

Accessibility 255 

For both of the two most common types of color blindness (protanopia and deuteranopia) we 256 

tested the colorblind-friendliness of all of the Matplotlib color palettes used by Geonomics as 257 

defaults. For perceptive simulation we used the script provided by Sarjak Thakkar (2018). All color 258 

palettes retain interpretability. 259 

  260 
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Figure Legends 261 

Figure S1: Trajectories for the frequencies of the ‘1’-alleles for 25 of the 250 simulated loci (one 262 

line per locus) in a Wright-Fisher model without mutation. We ran simulations for three mean 263 

population sizes, as determined by three fixed values of the carrying capacity (‘K_factor’) parameter, 264 

until all loci fixed. 265 

 266 

Figure S2: Violin plots of mean persistence time distributions across all loci from our Wright-Fisher 267 

validation test, shown as a function of harmonic mean population size. Resulting mean persistence 268 

times (red dots) are an extremely close match to predictions calculated using Equation S1 (black, 269 

horizontal lines). 270 

 271 

Figure S3: Ten randomly chosen allele frequency trajectories (top), population size (middle), and 272 

mean rate of allele frequency change (bottom; calculated for 15-timestep sliding windows) from the 273 

bottleneck validation test. We ran the simulation for 300 timesteps with a 50-timestep bottleneck.  274 

 275 

Figure S4: Map of six island populations at the end of the simulation for the stepping-stone 276 

validation test (left), produced using ‘model.plot’ in Geonomics, and plot of pairwise     values and 277 

inter-island migration rates as functions of inter-island distance (right).    values and p-values result 278 

from quadratic regressions of     values on inter-island distances and log-log regression of mean 279 

migration rates on inter-island distances.  280 

 281 

Figure S5: Plot of     over model time for the stepping-stone validation test. Each line represents a 282 

different island pair, with colors corresponding to increasing inter-island distances (from yellow to 283 

green). 284 

 285 

Figure S6: Results of discriminant analysis on principal components (DAPC) from the stepping-286 

stone validation test, including plots of (A) the individual loadings on the first three discriminant 287 

axes, (B) individuals at the final time step color coded by population membership assignments, and 288 

(C) DAPC membership probabilities for each of the individuals. The optimal number of PCs to retain 289 

(n = 59) was determined through cross-validation using the ‘xvalDapc’ function in the adegenet R 290 

package (Jombart et al. 2008).  291 
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 292 

Figure S7: Map of the population after spatially divergent selection at   = 0.10 in simulations for 293 

the divergence validation test, produced using the ‘model.plot_fitness’ function in Geonomics. 294 

Individuals are plotted on top of the selective landscape layer, which is divided into two halves. 295 

Outer circles are colored by phenotype, ranging from dark blue to dark red, representing the optimal 296 

phenotypes for each environmental background. Inner circles are color and sized by fitness, such that 297 

darker-gray, larger inner circles represent less fit individuals. Stochasticity leads to asymmetry in the 298 

structure of the hybrid zone, the nature of which varies from one iteration to the next; at the moment 299 

when this figure was produced, more blue alleles were present in the red environment than vice 300 

versa. 301 

 302 

Figure S8: Observed (solid lines) versus expected (dashed lines) allele-frequency trajectories for two 303 

contrasting habitats (blue = 0.0-valued; red = 1.0-valued) resulting from divergence test simulations 304 

with three selection coefficients:  = 0.01 (dark),   =0.05 (medium), and  = 0.10 (light). 305 

 306 

Figure S9: Plot of the mean difference between each individual’s phenotype and environmental 307 

value plotted against time, for divergence test simulations with three different selection coefficients 308 

(‘phi’). A pattern of background matching, which is indicative of local adaptation, builds up over 309 

time. The pattern develops more quickly, and becomes more pronounced, under stronger selection 310 

regimes. 311 

 312 

Figure S10: Map of the final generation from the cline test simulation on top of the selective 313 

landscape layer, with individuals colored by phenotype (outer circles) and fitness (inner circles), as in 314 

Figure S7. 315 

 316 

Figure S11: Plot of allele-frequency clines (neutral loci in black, selective locus in bold yellow) 317 

against the selective landscape layer (horizontal gradient from red to blue) from the cline test. 318 

 319 

Figure S12: Plot of the mean difference between each individual’s phenotype and environmental 320 

value plotted against time during the cline test simulation. A pattern of background matching builds 321 

up over time. 322 
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Figure S13: Results of the selective sweep validation test, including nucleotide diversity calculated 323 

in 11-locus windows across the genome (top row) and pairwise linkage (R2) for locus pairs plotted 324 

against genetic distance (bottom row). Genetic distance was calculated as the ‘recombination 325 

distance’ (the sum of intervening interlocus recombination rates between paired loci).  326 

 327 

Figure S14: Mean fitness of the entire population, over the full run of the selective sweep test 328 

simulation. 329 

 330 

Figure S15: Breakpoint densities, within 50, even-width genomic windows, as calculated from the 331 

tskit.TreeSequence results of a Geonomics simulation (red) and an equivalent msprime simulation 332 

(blue). The observed densities clearly recapitulate the true recombination rates expressed in the input 333 

recombination map (black dashed line). 334 

 335 

Figure S16:  Results from discriminant analysis of principal components (DAPC) of neutral-locus 336 

genotypes at the final time step from the simulations for the isolation by distance (IBD) and by 337 

environment (IBE) example, conducted using the R package adegenet (Jombart et al. 2008). The 338 

optimal number of PCs to retain (n = 7) was determined through cross-validation using the 339 

‘xvalDapc’ function (Jombart et al. 2008). A plot of the individuals’ loadings on the first three 340 

discriminant axes (A), with each individual colored according to its DAPC-derived population 341 

membership assignment (C), recapitulates their spatial arrangement (B). Beyond showing general 342 

patterns of IBD, our simulated neutral genetic data clearly match the expected hierarchical 343 

population structure: distinct clusters separated by the central barrier, with the subclusters further 344 

differentiated along the environmental gradients running in opposite directions on either side. 345 

 346 

Figure S17: The mean difference between individuals’ phenotypes and environmental values plotted 347 

against time, resulting from the simulations for the simultaneous selection example application. 348 

Values decrease over time for both traits, reflecting the buildup of a pattern of background matching.  349 

 350 

Figure S18: Results of the simultaneous selection simulation when selection is excluded (ɸ = 0). 351 

Individuals are colored by phenotype for the trait corresponding to each layer and show no signal of 352 

background matching, as expected. 353 
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Figure S19: The mean difference between individuals’ phenotypes and environmental values plotted 354 

against time, during the simultaneous selection simulation, when selection is excluded (ɸ = 0). These 355 

values show no decreasing trend over time, unlike in the model including selection (Figure S16). 356 

  357 
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 Code Samples 358 

 Code Sample S1: 359 

 >>> gnx.make_parameters_file(filepath=‘yosemite_params.py’, 360 

                                                   layers=[{‘type’: ‘file’, ‘change’: True}, 361 

                                                 {‘type’: ‘file’, ‘change’: True}, 362 

                                                               {‘type’: ‘file’, ‘change’: False}], 363 

                                       species=[{‘movement’: True, 364 

                               ‘movement_surface’: True, 365 

                                                                  ‘genomes’: True, ‘n_traits’: 1}], 366 

                                        data=True) 367 

  368 

 Code Sample 2: 369 

 >>> model = gnx.make_model(filepath=‘yosemite_params.py’) 370 

 >>> model.walk(100000, mode = ‘burn’) 371 

 >>> model.walk(500, mode = ‘main’)  372 
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