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ABSTRACT

Landscape genomic approaches for detecting genotype-environment associations (GEA), isolation by distance (IBD) and isola-
tion by environment (IBE) have seen a dramatic increase in use, but there have been few thorough analyses of the influence of
sampling strategy on their performance under realistic genomic and environmental conditions. We simulated 24,000 datasets
across a range of scenarios with complex population dynamics and realistic landscape structure to evaluate the effects of the
spatial distribution and number of samples on common landscape genomics methods. Our results show that common analyses
are relatively robust to sampling scheme as long as sampling covers enough environmental and geographic space. We found that
for detecting adaptive loci and estimating IBE, sampling schemes that were explicitly designed to increase coverage of available
environmental space matched or outperformed sampling schemes that only considered geographic space. When sampling does
not cover adequate geographic and environmental space, such as with transect-based sampling, we detected fewer adaptive loci
and had higher error when estimating IBD and IBE. We found that IBD could be detected with as few as nine sampling sites,
while large sample sizes (e.g., greater than 100 individuals) were crucial for detecting adaptive loci and IBE. We also demonstrate
that, even with optimal sampling strategies, landscape genomic analyses are highly sensitive to landscape structure and migra-
tion—when spatial autocorrelation and migration are weak, common GEA methods fail to detect adaptive loci.

1 | Introduction Landguth 2013; Selmoni et al. 2020). This dependence remains
poorly understood, however, because the sensitivity of common
methods to sampling strategy has not been evaluated across
a realistic range of environmental, demographic and genetic

conditions.

Landscape genomics aims to characterise and interpret complex
patterns of local adaptation and genetic structure based on a lim-
ited number of genetic samples (Manel et al. 2003; Storfer et al.
2007). The number and spatial distribution of these samples can

have substantial effects on the power and accuracy of common
analyses, and the strength of this effect is likely dependent on
the environmental structure of the landscape and the popula-
tion dynamics of the study system (Dauphin et al. 2022; De Mita
et al. 2013; Forester et al. 2018; Lotterhos and Whitlock 2015;
Manel, Albert, and Yoccoz 2012; Oyler-McCance, Fedy, and
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Two major classes of landscape genomic analysis include (1)
quantifying the drivers of genetic structure, including isolation
by distance (IBD; Wright 1943) and isolation by environment
(IBE; Wang 2013), and (2) identifying genes linked to envi-
ronmental variation using genotype-environment association
(GEA; Capblancq and Forester 2021; Caye et al. 2019; Frichot
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et al. 2013; Forester et al. 2018). Previous work evaluating the
performance of GEA under different sampling schemes and
demographic scenarios have found mixed support for the im-
portance of sample distribution and have generally concluded
that maximising sample size is most important (De Mita
et al. 2013; Forester et al. 2018; Lotterhos and Whitlock 2015;
Selmoni et al. 2020). These studies also showed that demo-
graphic conditions play a role in the performance of differ-
ent methods and sampling strategies, but all of them were
limited to testing a small number of demographic scenarios
(two to four), likely due to computational constraints, and
none evaluated the effects of landscape structure (though see
Forester et al. 2016) nor tested methods for detecting IBD and
IBE (De Mita et al. 2013; Forester et al. 2018; Lotterhos and
Whitlock 2015; Selmoni et al. 2020).

Here, we build off of the existing studies to evaluate the effects
of common sampling strategies on landscape genomic anal-
yses under complex and realistic conditions simulated using
Geonomics (Terasaki Hart, Bishop, and Wang 2021). Our aim
was to test a range of sampling strategies while varying key
demographic and landscape parameters expected to affect
landscape genomic results, including population size, migra-
tion rate, selection strength, autocorrelation within landscape
layers and correlation between landscape layers. We predicted
that weak migration and small population size would reduce
discovery rates for GEA by generating a confounding popula-
tion genetic structure (Hoban et al. 2016; Price et al. 2020; Li
et al. 2017; Rellstab et al. 2015), but that these same conditions
would positively affect the performance of methods to quan-
tify IBD and IBE since decreased migration and small popu-
lation size should increase signatures of isolation (Wang and
Bradburd 2014). We expected that greater selection strength
would have a positive effect on both GEA and detection of IBE
by increasing the strength of local adaptation. We hypothe-
sised that the structure of the landscape, as defined by the cor-
relations between environmental variables and the degrees of
spatial autocorrelation within them, would also have a strong
effect since landscapes drive spatially variable selection and,
thereby, patterns of local adaptation (Forester et al. 2016;
Lotterhos 2023; Rellstab et al. 2015). Specifically, we predicted
that higher autocorrelation would have a positive effect on
both GEA and the detection of IBE, while higher correlation
between landscape layers would make it harder to disentangle
which environmental variable is associated with an adaptive
locus. Finally, we hypothesised that sampling design would
interact with all of these factors to determine the power and
accuracy of landscape genomic analyses.

We created 32 unique simulation scenarios by varying popula-
tion genetic and landscape parameters and ran forward-time,
spatially continuous and individual-based Geonomics simula-
tions (Terasaki Hart, Bishop, and Wang 2021). We allowed popu-
lations to evolve freely on the simulated landscapes and sampled
them using a total of seven individual- and site-based sampling
schemes. We tested a suite of common landscape genomic meth-
ods for GEA and for detecting IBE and IBD. By exploring the
parameter space defined by the full crossing of simulation con-
ditions and sampling schemes, we created a robust framework
through which to understand the effects of sampling design,

demography and landscape structure on landscape genomic
analysis.

2 | Materials and Methods
2.1 | Simulated Landscapes

To evaluate the effects of the landscape structure, we simu-
lated environmental layers with different levels of spatial auto-
correlation (i.e., the tendency of nearby points to exhibit more
similar values) and correlation between layers. We used the
R package ‘NLMR’ version 1.1.1 (Sciaini et al. 2018) to create
100 by 100 cell layers using a midpoint displacement neutral
landscape model, which generates landscapes with realistic
fractal patterns and user-defined levels of spatial autocorrela-
tion (Peitgen & Saupe 1988). To simulate adaptation to two en-
vironmental variables, we used a pair of simulated landscapes
in each simulation. We set spatial autocorrelation using the
roughness parameter (H) to either 0.05 (weak autocorrelation;
Moran's I of approximately 0.66) or 0.5 (strong autocorrela-
tion; Moran's I of approximately 0.99). We set the correlation
between layers to r=0.3 (weak correlation) or r=0.6 (strong
correlation). We chose these levels of spatial autocorrelation
and environmental correlation based on distributions we gen-
erated from global temperature, precipitation and tree canopy
cover rasters by randomly sampling windows of 100 by 100
cells and calculating Moran's I of the variables and the cor-
relation between temperature and precipitation within each
window (File S2; Fick and Hijmans 2017). To ensure that our
results were not dependent on a particular landscape configu-
ration, we generated three independent replicates of our land-
scapes (see Figure S1 for example landscapes).

2.2 | Geonomics Simulations

To test the effects of population size, migration rate, selection
strength, spatial autocorrelation and environmental correlation
on the performance of different sampling strategies and methods,
we simulated each of these parameters at a low’ and ‘high’ level
(see File S3 for the complete parameters file; Figure S2). We ran 10
replications of each simulation to capture variation in results due
to stochasticity. Together with the three sets of simulated land-
scapes, this produced a total of 960 simulations (30 repetitions of
32 unique parametrisations). We ran our simulations in Python
version 3.9.7 (Van Rossum and Drake 2009) using Geonomics
version 1.3.9 (Terasaki Hart, Bishop, and Wang 2021).

The simulated landscapes were provided to Geonomics as
the environmental layers driving local adaptation. A single
environmental layer acts as the selective force for a single
continuous trait. To simulate multivariate adaptation (i.e., ad-
aptation to multiple environmental gradients), we used two
environmental layers to drive selection on two separate traits.
Each of the two traits had phenotypic values determined by
the additive effects of four independent, co-dominant loci,
for a total of eight adaptive loci. The phenotype for a given
trait was calculated as the ‘null’ phenotype plus the sum of
the allele dosages at all loci underlying that trait multiplied
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by their effect sizes. In our simulations, the ‘null’ phenotype
value was 0.50 and the effect sizes were 0.25 for two of the loci
and —0.25 for the other two loci for each trait. Because the
simulated species was diploid, there were eight total alleles
underlying each trait, resulting in phenotype values ranging
from 0 to 1 by increments of 0.125. We also simulated 10,000
neutral loci to simulate neutral population genetic structure.
All adaptive and neutral loci were allowed to freely recombine
and, therefore, are unlinked.

We varied population size, migration rate and selection strength
in our Geonomics simulations to create a range of population
genetic scenarios (Table S1). We varied population size by
changing the carrying capacity (K) of each cell in the landscape,
with all cells having uniform values. This results in population
sizes of approximately 3000-4000 when K=1 and 5000-7000
when K=2. We varied the migration rate by changing the vari-
ance of the lognormal distributions used to model migration
and dispersal distances (Nield et al. 2020; Russo, Portnoy, and
Augspurger 2006; Uriarte et al. 2011). The mean of these distri-
butions was set to 0 such that the expected movement and disper-
sal values when variance =0.25 was approximately 1 cell width
and when variance =1.00 was approximately 2 cell widths. We
varied selection strength by changing the phenotypic selection
coefficient (¢), which dictates the strength of selection acting on
all loci underlying a trait. We tested ¢ values of 0.5 and 1.0 for
both traits to represent our lower and higher levels of selection,
respectively. An individual's fitness is determined by the prod-
uct of ¢ and the absolute difference between the individual's
phenotype value and the environmental value at its location.

Each Geonomics simulation begins with a ‘burn-in’ period
where individuals move and reproduce, without selection, until
an equilibrium in the population dynamics is achieved, as de-
scribed in Terasaki Hart, Bishop, and Wang (2021). Following
this period, we ran our simulations for 6000 time steps. We
determined that 6000 steps was sufficient time for the simula-
tions to achieve equilibrium by running a subset of simulations
for 10,000 timesteps and testing for demographic and popu-
lation genetic equilibrium over time (File S4). We also con-
firmed post hoc that the simulations had reached equilibrium
in mean fitness and that local adaptation had occurred based
on phenotype-environment correlations (File S5). We estimated
the strength of GEAs by calculating the magnitude of the cor-
relation between dosages for each adaptive locus and their
corresponding environmental variable. We tested the effect of
landscape and population genetic parameters on local adapta-
tion by running linear models with the phenotype-environment
and genotype-environment correlations as the response vari-
ables and the simulated parameters as the predictors. To esti-
mate the confounding effects of a neutral structure under the
different simulated conditions, we calculated the correlation be-
tween each neutral locus and each environmental variable and
compared the magnitudes across the different parameter levels.

2.3 | Effects of Sampling
To quantify the effects of the sampling strategy on the perfor-

mance of landscape genomic methods, we varied the sampling
unit (i.e., either individual- or site-based), sampling scheme (i.e.,

spatial distribution) and sample size. For individual-based sam-
pling, we extracted allele dosages, environmental values and
coordinates for each individual. For site-based sampling, we ex-
tracted allele frequencies, average environmental values across
individuals and coordinates for each site.

Under individual-based sampling, we selected samples across
the landscape using four different schemes: random, grid-based,
transect-based and a form of environmentally stratified sam-
pling that we refer to hereafter as ‘E-space sampling.’ The ran-
dom sampling scheme mirrors unstructured or opportunistic
sampling, and the grid-based scheme mimics sampling efforts
that aim for even geographic coverage. We used E-space sam-
pling to maximise the range of environmental values covered
while minimising spatial autocorrelation for both environmen-
tal variables, thereby increasing the power to detect environ-
mentally driven patterns of genetic variation while decreasing
the confounding effects of spatial autocorrelation, which can
lead to false discoveries. This is similar to an approach described
by Lotterhos and Whitlock (2015) that involves selecting sam-
pling pairs that are geographically close but environmentally
distant. However, instead of selecting pairs, we performed E-
space sampling by taking sets of random samples and selecting
the set that balanced maximising the range of environmental
values covered against minimising spatial autocorrelation mea-
sured with Moran's I. This was done by calculating a score for
each of the random sampling schemes by summing the scaled
variance of each environmental variable with scaled I—Moran's
I'and selecting the sample set with the highest score.

For each sampling scheme, we selected 36, 81, 144 or 225 sam-
ples for a total of 16 unique sampling strategies. These values
were chosen to allow for even grid-based sampling since they
are all square numbers (e.g., a 6 by 6 grid-based can be used to
obtain 36 samples). Applied across all 960 simulations, this re-
sulted in 15,360 individual-based landscape genomic datasets.
We performed random sampling by picking random individual
samples from across the landscape. We performed grid-based
sampling by breaking up the landscape layer into a grid based on
the number of points to be sampled and sampling each cell ran-
domly. For example, to sample 36 points, we divided the land-
scape into a 6 by 6 grid and sampled one random point from each
cell. We performed transect-based sampling by taking random
samples along three parallel and equidistant transects across the
landscape. We performed E-space sampling as described above,
selecting from 1000 sets of random samples of a given sample
size. Examples of each sampling scheme are shown in Figure 1.

Under site-based sampling, we chose samples around ‘sites’ se-
lected based on the three possible sampling schemes: random,
grid and E-space sampling. For each scheme, we used 9, 16 or 25
sites for a total of 9 unique sampling strategies, and we selected
the 10 closest samples to each site. These values were chosen
to allow for even grid-based sampling since they are all square
numbers. Applied across all 960 simulations, this resulted in
8640 site-based landscape genomic datasets. We performed ran-
dom and E-space sampling the same way as for individual-based
sampling. We performed grid-based sampling by choosing equi-
distant sites across the landscape based on the number of sites
to be sampled. This scheme is analogous to the individual grid-
based sampling scheme and approximates a sampling scheme
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A. Individual-based sampling

Scheme

R

36
Number of samples

B. Site-based sampling

Number of sites

FIGURE1 | Example of different (A) individual-based and (B) site-based sampling strategies on an example landscape with high spatial autocor-

relation. ES, E-space; G, grid-based; R, random; T, transect-based.

with even coverage of geographic space. Examples of each sam-
pling scheme are shown in Figure 1.

2.4 | Landscape Genomic Analyses

Using the 24,000 simulated landscape genomic datasets, we
evaluated two GEA methods and two methods for estimating
IBD and IBE. For GEA analyses, we implemented Latent Factor
Mixed Modelling (LFMM2; Caye et al. 2019) and Redundancy
Analysis (RDA; Capblancq and Forester 2021; Forester
et al. 2018). For estimating IBD and IBE, we chose Multiple
Matrix Regression with Randomization (MMRR; Wang 2013)
and Generalised Dissimilarity Modelling (GDM; Ferrier
et al. 2007; Fitzpatrick and Keller 2015; Mokany et al. 2022).
We selected these methods based on their widespread use and
applicability to individual-based sampling. We carried out our
analyses using R version 4.3.0 (R Core Team 2023).

2.4.1 | GEA Analyses

LFMM is a univariate GEA method that tests for significant as-
sociations between loci and environmental variables while cor-
recting for unobserved confounders using latent factors (Caye
et al. 2019; Frichot et al. 2013). We performed LFMM (Frichot
et al. 2013) using the LFMM2 method, implemented in the R
package ‘Ifmm’ version 1.1 (Caye et al. 2019).

There are two methods within LFMM, ‘lasso’ and ‘ridge’, which
differ in the penalty used for regularised least-squares minimi-
sation (see Caye et al. 2019 and the ‘Ifmm’ package documenta-
tion). We tested both methods and found that the LFMM ‘ridge’
method generally performed best in terms of TPR and FDR, so

we selected the ‘ridge’ method for our analysis (File S6). LFMM
also requires the selection of K latent factors for use in the model.
K can be selected based on estimates of the population genetic
structure from clustering algorithms (Frichot et al. 2013). We
used TESS3 to perform K selection with the R package ‘tess3r’
version 1.1.0 (Caye et al. 2016). TESS3 provides estimates of the
population genetic structure while accounting for geography
(Caye et al. 2016). For each dataset, we evaluated K values from
one to nine and automatically determined K based on where the
TESS3 cross validation score plateaued (Hyseni 2019; File S6).

For RDA, we followed the procedure described by Capblancq
and Forester (2021) using the R package ‘vegan’ version 2.6.4.
RDA is a multivariate GEA method that uses constrained ordi-
nation to identify covarying allele frequencies associated with
multiple environmental variables (Capblancq and Forester 2021;
Forester et al. 2018). In addition to standard RDA, we performed
partial RDA (pRDA) conditioning on two genetic PCs to correct
for population genetic structure as in Lotterhos (2023).

For both LFMM and RDA, we used a minor allele frequency
filter of 0.05, following common practice used with real ge-
nomic datasets and because minor allele frequency filters can
affect GEA results (Ahrens et al. 2021). We corrected the p-
values produced by LFMM and RDA using a false discovery
rate (FDR) correction and determined significance based on
an alpha level of 0.05. Since RDA computes p-values based
on RDA axes, there is one set of p-values overall, rather than
one for each environmental variable. Therefore, to distin-
guish which loci were associated with which environmental
variable, we assigned each locus identified by RDA to the
environmental variable it had the strongest correlation with,
similarly to Capblancq and Forester (2021). The true positive
rate (TPR; the number of correctly identified loci, divided by

40f13

Molecular Ecology Resources, 2025

85U8017 SUOWILIOD BAea1D 3|edldde ayp Aq pausenob aJe e YO ‘SN JO s3I 10} ARIqIT8UIIUO AB|IAA L (SUONIPUOD-PUR-SLLIBIALIOD" A |IM A RIq Ul UO//SANY) SUORIPUOD pUe SWB | 8L 885 *[5202/£0/60] U0 Ariq1TaulUO A8]IM ‘SeoIAeS Arlq)T 0150 AQ 250K T 8660-GGL T/TTTT OT/I0PALOD A8 |IM ARe.q1pulUO//:SANY Wo. papeojumod ‘€ ‘SZ0Z ‘8660S5LT



the total number of adaptive loci) and the FDR (the number of
loci identified incorrectly, divided by the total number of loci
identified) were used as evaluation metrics. The total number
of adaptive loci for the TPR was calculated based on the num-
ber of adaptive loci that passed the minor allele frequency fil-
ter (we did not count adaptive loci that were essentially fixed).
We calculated the TPR and FDR in two ways: (1) counting any
adaptive loci identified as a true positive or (2) counting only
adaptive loci identified with the correct environmental vari-
able as a true positive. We will refer to these statistics as the
relaxed and strict TPR and FDR, respectively.

2.4.2 | IBE and IBD Analyses

We performed MMRR as described in Wang (2013). We per-
formed GDM using the R package ‘gdm’ version 1.5.0.9.1
(Fitzpatrick et al. 2022). Both of these methods estimate IBD
and IBE based on the relationships between genetic, geographic
and environmental distances. The key difference between
these methods is that GDM fits nonlinear functions, known as
I-splines, while MMRR uses linear regression with randomis-
ation (Ferrier et al. 2007; Fitzpatrick and Keller 2015; Mokany
et al. 2022; Wang 2013). The coefficients output by these models
were used to estimate the contributions of IBD and IBE, and the
p-values from their significance procedures were used to deter-
mine detectability of IBD and IBE. We used Euclidean genetic,
geographic and environmental distances as inputs for both the
MMRR and GDM models. For GDM, genetic distance values
must be less than or equal to one, so we rescaled the euclidean
genetic distances from zero to one. For variable significance test-
ing, we used a total of 50 permutations for both methods.

To evaluate the accuracy of these models, ‘full’ models were
built using 1000 randomly selected individuals to approxi-
mate ‘true’ values for IBD and IBE using a consistent number
of samples across all of the simulations, which varied in total
population size. We post hoc confirmed that coefficient values
plateaued by 1000 samples (File S7). The error of the coefficients
of IBD and IBE was calculated by taking the difference between
the full model values (i.e., the ‘true’ values) and the sub-sampled
model values (i.e., the ‘observed’ values). Because the maximum
coefficient value for MMRR is one, while for GDM, there is no
upper limit, the coefficients, and therefore the errors, cannot
be directly compared. To make the errors more comparable, we
scaled the coefficients by dividing by the maximum full model
coefficient value across all of the simulations for each method so
the maximum possible coefficient value was one. We calculated
the mean absolute error by taking the mean absolute value of the
difference between the full and sub-sampled model coefficients.
Because there were two environmental variables, we averaged
the error for IBE across both environmental variables. We cal-
culated the correlation between the full model coefficients ob-
tained from MMRR and GDM to get an approximation of the
agreement between the two methods. We also confirmed post
hoc that IBD and IBE had time to develop by calculating the pro-
portion of times that IBD and IBE were detected as significant
using the full models (File S7).

We calculated the TPR and FDR for detection of IBD and IBE
based on the bootstrapped p-values from each method with an

alpha cut-off of 0.05. MMRR calculates bootstrapped p-values
based on a null distribution of t-values from permuting the rows
and columns of the genetic distance matrix. GDM calculates
bootstrapped p-values based on a null distribution of deviance-
explained values from permuting each predictor variable in-
dividually. The TPR was the proportion of times there was a
positive detection in both the sub-sampled model and the full
model. The FDR was the proportion of times there was a detec-
tion in the sub-sampled model that was not shared with the full
model. The statistics for both environmental variables were av-
eraged to get the overall IBE TPR and FDR. Sometimes GDM
was unable to calculate p-values because (1) the variable coef-
ficient was zero, (2) the variable permutation procedure could
not be conducted because more than two variable coefficients
in the model were zero, or (3) the variable permutation proce-
dure failed because one of the models used in the calculation
could not be fit. In the case of (1), the corresponding variable
was treated as non-significant because the coefficient was zero.
In the case of (2) and (3), the p-value based statistics TPR and
FDR were not calculated since the variable permutation proce-
dure could not be carried out.

2.5 | Summary Analyses

We used linear mixed effect models to summarise the results of
the landscape genomic analyses. The response variable for these
models was the evaluation statistic of interest. The fixed effects
were the parameter levels, the sampling scheme and the number
of samples. Separate models were run for each sampling unit
(i.e., individual and site-based sampling). A random effect for
the random seeds used to generate the sets of simulated land-
scapes was used to account for similarities in results between
landscapes generated using the same random seed. We used a
Type III analysis of variance (ANOVA) to test for significant
differences across the predictor variables using Satterthwaite's
degrees of freedom method with the R packages ‘lme4’ ver-
sion 1.1.34 (Bates et al. 2015) and ‘ImerTest’ version 3.1.3
(Kuznetsova, Brockhoff, and Christensen 2017). We used the
‘emmeans’ version 1.8.7 (Lenth 2023) R package to compare the
estimated marginal means for the different sampling strategies
with a Tukey adjustment for multiplicity.

3 | Results
3.1 | Simulation Results

We confirmed that local adaptation occurred across almost all
of our simulations based on phenotype-environment correla-
tions. We found a significant association between phenotype
and environment for at least one trait in 93% of the simulations
(p<0.05; File S5). Of the 7% of simulations that did not have
significant associations, 100% of them occurred when spatial
autocorrelation was low and correlation between layers was
high (File S5). We found significant correlations between the
adaptive loci and their corresponding environmental vari-
able 63% of the time (p <0.05; File S5). Spatial autocorrelation
had the greatest effect on the strength of local adaptation;
phenotype-environment and genotype-environment correla-
tions were much stronger when autocorrelation was high
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A. Individual-based sampling
LFMM RDA

x
o
~
Scheme
-e- ES
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Number of samples

B. Site—based sampling
LFMM RDA

TPR

Scheme
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FDR
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Number of sites

FIGURE 2 | Selected simulation results showing the effect of sampling strategy on TPR and FDR for GEA analyses under the best conditions.

Sampling strategy includes sampling units (i.e., individual and site-based; panels A and B, respectively), sampling scheme (e.g., random) and sample

size. The best conditions are high spatial autocorrelation, low environmental correlation, high migration rate, large population size and strong selec-
tion. To see results under the worst conditions, see Figure S5. Results for all other simulated conditions and statistics can be found in File S6. Each
point represents the average of all of the simulation iterations and landscape seeds. The bands represent one standard deviation from the mean. EG,
E-space; FDR, strict false discovery rate; G, grid-based; LFMM, latent factor mixed models; R, random; RDA, redundancy analysis; T, transect-based;

TPR, strict true positive rate.

(mean T ohenotype = 0.86+0.05, mean Fgenotype

=0.32+0.04) than
low (mean Tohenotype = 0-36 £0.18, mean 7, ... =0.09 £0.05;
File S5). Phenotype-environment and genotype-environment
correlations were also strengthened by larger population sizes,
stronger selection, less migration and lower environmental
correlation (p <0.05 for all effects), but the magnitudes of the
fixed effects for these variables were all <0.1 (File S5). We
found that high spatial autocorrelation and low migration led
to a stronger environmentally associated neutral structure;
mean genotype-environment correlations at non-adaptive
loci were stronger under high (r=0.12+0.04) compared to
low (r=0.06+0.03) autocorrelation and stronger under low
(r=0.13%+0.04) compared to high (r=0.06+0.02) migration
(File S5). Based on these results, it is evident that (1) low
spatial autocorrelation weakens phenotype- and genotype-
environment correlations and (2) low migration strengthens
these correlations but generates stronger confounding correla-
tions between neutral loci and the environment.

3.2 | GEA Analyses

We evaluated how key landscape and population genetic param-
eters affected the performance of GEA methods under differ-
ent sampling strategies. We found that the best conditions for
detecting adaptive loci were when migration and spatial auto-
correlation were high (Figures S4 and S3; File S6). Outside of
these conditions, the TPR for LFMM and RDA was frequently
zero across all schemes (Figures S4 and S5; File S6). The low
TPR in scenarios with low spatial autocorrelation and low mi-
gration was likely because (1) the strength of local adaptation
was weaker under low autocorrelation and (2) the confounding
effects of neutral structure were stronger under low migration.

In cases where the TPR was not zero, we found that correction
for the population structure using pRDA resulted in reduced
TPR compared to standard RDA; the magnitude of the reduc-
tion depended on simulated conditions and sampling strategy,
but on average the relaxed TPR was reduced by 0.08 using pRDA
(File S6). Given these results, we focus further discussion of
RDA on regular and not pRDA. We also found that, as expected,
the relaxed TPR (i.e., based on any adaptive loci identified) were
generally higher than the strict TPR (i.e., based on only adap-
tive loci identified with the correct environmental variable);
however, the difference between the two was relatively small
(mean difference of 0.004 for LFMM and 0.01 for RDA; File S6).
Our finding of little to no difference between strict and relaxed
TPR was consistent even under high environmental correlation
(mean difference of less than 0.02 for both methods; File S6), in-
dicating that both methods were able to distinguish between the
driving environmental variables, even when the variables were
correlated. The effects of simulation conditions and sampling
strategy were consistent between the strict and relaxed TPR and
FDR, so henceforth we refer to the strict statistics, unless speci-
fied otherwise (File S6).

Our results showed that transect-based sampling performed
poorly and had a significantly lower TPR than the other
individual-based sampling schemes for both LFMM and RDA
(Figure 2, Figures S5 and S6; File S6). The estimated difference
in TPR between transect-based sampling and the other schemes
was approximately 0.02-0.05 across both methods and all sim-
ulated conditions (p <0.001; File S6). The differences were most
prominent under the best conditions for GEA analysis (i.e., high
autocorrelation, high migration, strong selection, large popula-
tion size and low correlation between layers); under these con-
ditions, transect-based sampling led to an average reduction
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FIGURE3 | Selected simulation results showing the effect of the sampling strategy on detection and estimation of IBD under the best conditions.
Sampling strategy includes sampling units (i.e., individual and site-based; panels A and B, respectively), sampling scheme (e.g., random) and sample

size. The best conditions are low correlation between layers, low migration rate, small population size and strong selection. For MMRR, low spatial

autocorrelation is also best (i.e., significantly reduces error), but the effect is small (< 0.01; File S7), and therefore for consistency with the IBE plots,

high spatial autocorrelation is used in this figure. To see results under the worst conditions, see Figure S7. Results for all other simulated conditions

and statistics can be found in File S7. Each point represents the average of all of the simulation iterations and landscape seeds. ES, E-space; FDR,

false discovery rate; G, grid-based; GDM, generalised dissimilarity model; MAE, mean absolute error; MMRR, multiple matrix regression with ran-

domization; R, random; T, transect-based; TPR, true positive rate.

in the TPR of 0.08 for LFMM and 0.09 for RDA compared to
other schemes (File S6). Under site-based sampling, the E-Space
scheme performed better than random schemes for both meth-
ods (estimated difference of 0.03 for LFMM and 0.02 for RDA,
p<0.001; Figure 2; File S6). E-space sampling also performed
better than grid-based sampling for LFMM (estimated differ-
ence of 0.02, p<0.001; File S6) and had comparable TPR to grid-
based sampling for RDA (estimated difference of 0.01, p=0.21;
File S6). Under both individual- and site-based sampling, differ-
ences in FDR between sampling schemes were insignificant or
small (e.g., estimated differences of <0.05; Figure 2; Figures S5
and S6; File S6).

We found that large sample sizes (> 100 samples) were neces-
sary for strong GEA performance. However, under unfavourable
conditions for GEA (i.e., low spatial autocorrelation and low mi-
gration), almost no adaptive loci were detected, even with the
largest sample sizes (Figures S4 and S5; File S6). Outside of these
conditions, the TPR generally increased with increasing sample
size and plateaued around 200 samples with a TPR of around
0.90 for LFMM and 0.70 for RDA under the best conditions for
GEA (Figure 2; File S6). For site-based sampling, with increas-
ing sample size, the TPR stayed relatively constant for LFMM

at around 0.40 and increased for RDA up to about 0.60 under
the best conditions for GEA (Figure 2, Figure S5; File S6). For
LFMM, the FDR decreased with increasing sample size for both
individual- and site-based sampling but was generally above
0.50 under site-based sampling (Figure 2, Figure S5; File S6).
For RDA, the FDR was universally close to zero for individual-
based sampling and less than 0.30 for site-based sampling re-
gardless of sample size (Figure 2, Figure S5; File S6).

3.3 | IBD And IBE Analyses

We found that both GDM and MMRR were almost universally
able to detect IBD regardless of sampling strategy and simula-
tion conditions (Figure 3, Figure S7; File S7). The best and worst
performing scheme in terms of IBD error varied between dif-
ferent simulation conditions; for example, with MMRR, under
the best conditions (characterised by lower migration), transect-
based sampling produced consistently higher error, but, under
the worst conditions (characterised by higher migration), per-
formed no differently than other schemes (Figure 3, Figure S7).
For GDM, under the best conditions, grid-based site-based
sampling performed similarly to other schemes, but, under the
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worst conditions, had much lower error than other schemes
(Figure 3, Figure S7). Otherwise, we did not observe any no-
table differences between schemes (Figure 3, Figures S6 and
S7; File S7). IBD error decreased with increasing sample size
and appeared to start plateauing around 225 individual-based
samples and 25 site-based samples (Figure 3, Figure S7). Our
test for concordance between MMRR and GDM coefficients of
IBD found that they were strongly, positively correlated overall
(r=0.91, p<0.001; File S7). The coefficients were most strongly
correlated when migration was high and population size was
large (r=0.60, p<0.001; File S7) and most weakly correlated
when migration was low and population size was small (r=0.21,
p=0.001; File S7).

Our results indicated that detection of IBE was very sensitive to
simulation conditions, sample size and method. The TPR for IBE
was highest when migration was low and spatial autocorrelation
was high (Figure S7; File S7). When migration was high and spa-
tial autocorrelation was low, IBE did not establish in most cases,
based on the full models (e.g., MMRR had a full model IBE de-
tection rate of 13% under these conditions; File S7), as might be
expected under these conditions, and therefore detection rates
were low overall. GDM had much lower detection rates for IBE
than did MMRR (Figure 4, Figure S8; File S7). MMRR was able
to detect IBE with intermediate success (e.g., TPR of ~50%-80%
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for individual-based sampling; Figure S8) when either migration
rates were high and spatial autocorrelation was high or when
migration rates were low and spatial autocorrelation was low,
but GDM was infrequently able to detect IBE under these con-
ditions (TPR < ~25%; Figure S8). We believe that this difference
is due to how these methods assess significant relationships (see
Discussion). Another difference between results for the two
methods is that MMRR sometimes produced negative coeffi-
cients for IBE. This is of note since the expectation for IBE is
that increasing environmental distance results in increasing ge-
netic distance, so coefficients of IBE are expected to be positive.
Only a small proportion (<5%) of the negative coefficients for
MMRR were significant (File S7). Negative coefficients of IBE
were more common when spatial autocorrelation was weak and
environmental correlation was high (File S7). Weaker selection
strength and lower migration rates also resulted in a greater
proportion of negative coefficients, but had a less notable ef-
fect (File S7). We found that the full model coefficients of IBE
were strongly correlated between MMRR and GDM (r=0.67,
p<0.001; File S7) and the strength of the relationship was con-
sistent across different levels of migration and autocorrelation,
suggesting concordance between the approaches (File S7).

We found that the best sampling scheme for detecting IBE varied
across method and simulation conditions (Figure 4, Figures S6
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FIGURE4 | Selected simulation results showing the effect of the sampling strategy on detection and estimation of IBE under the best conditions.
Sampling strategy includes sampling units (i.e., individual and site-based; panels A and B, respectively), sampling scheme (e.g., random) and sam-

ple size. The best conditions are high spatial autocorrelation, low environmental correlation, low migration rate, small population size and strong

selection. To see results under the worst conditions, see Figure S9. Results for all other simulated conditions and statistics can be found in File S7.

Each point represents the average of all of the simulation iterations and landscape seeds. ES, E-space; FDR, false discovery rate; G, grid-based; GDM,

generalised dissimilarity model; MAE, mean absolute error; MMRR, multiple matrix regression with randomization; R, random; T, transect-based;

TPR, true positive rate.
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and S9; File S7). Transect-based sampling had the highest
error with MMRR (estimated difference of 0.007-0.008 com-
pared to other schemes, p <0.001; File S7); however, similarly
to IBD error, this difference was mainly found under the best
conditions for detecting IBE (Figure 4; File S7) and otherwise
transect-based sampling performed similarly to other schemes
(Figure S9). Individual-based E-space sampling had higher TPR
than random and grid-based sampling (estimated difference of
0.08-0.09, p<0.001; File S7) and comparable rates to transect-
based sampling (p=0.09; File S7); however, this pattern was
most evident under the low spatial autocorrelation and low
migration scenario shown in Figure S8 and was not consistent
across other simulated conditions. Under site-based sampling,
E-space sampling had the highest TPR for MMRR (estimated
difference of 0.14 compared to grid-based sampling and 0.05
compared to random-based sampling, p<0.001; File S7), but,
again, this difference was inconsistent across simulated condi-
tions (Figure S8; File S7).

For GDM, the TPR for IBE was often undefined because IBE was
not detected in the full GDM models (i.e., the denominator for
the TPR calculation was zero; Figure S9; File S7). The TPR was
also occasionally undefined in cases where the variable signifi-
cance procedure could not be carried out because more than two
variable coefficients in the model were zero or because one of the
models used in the calculation could not be fit (File S7). Overall,
the TPR was only consistently defined when spatial autocorrela-
tion was high and migration was low (Figure 4; File S7).

We found that detection of IBE required large sample sizes
(>100 samples). When individual-based sample sizes were ap-
proximately 100 or greater, IBE was detected almost 100% of
the time by MMRR and about 50% of the time at best by GDM
(Figure 4; File S7), when migration was low and spatial auto-
correlation was high. Under the same conditions, for the largest
site-based sample sizes, IBE was detected less than 50% of the
time by MMRR and less than 10% of the time by GDM (Figure 4;
File S7). We found that more migration and lower spatial auto-
correlation resulted in lower detection rates using both MMRR

(for individual-based sampling: ﬁmigralion =-0.43, p<0.001;
ﬁspaﬁal autocorrelation = 0-27> p £0.001; Figure S3; File S7) and GDM
(for individual-based sampling: ﬁmigraﬁon =-0.25, p<0.001;

ﬁspatial autocorrelation = 0-12, p<0.001; Figure S3; File S7). When
migration was high and spatial autocorrelation was low, IBE did
not consistently establish in our simulations, as expected under
conditions of high gene flow and low environmental structure
(Figure S8). For both MMRR and GDM, IBE error decreased
with increasing sample size and plateaued around 225 individu-
als and 25 sites (Figure 4, Figure S9; File S7).

4 | Discussion

We found that landscape genomic methods were largely robust
to sampling schemes. However, sampling to maximise environ-
mental space and minimise sample spatial autocorrelation (i.e.,
E-space sampling) performed better than or comparably to other
sampling schemes, while transect-based sampling led to consis-
tently worse results. Sufficient sample size (> 100 samples) was
critical for detecting adaptive loci and IBE, but not for detecting
IBD. Our results show that landscape structure and migration

have significant effects on the performance of landscape ge-
nomic analyses. Even though local adaptation occurred across
most of our simulated conditions, high environmental spatial
autocorrelation and strong migration were the only conditions
under which we were able to consistently identify adaptive loci
and high spatial autocorrelation and weak migration were the
only conditions under which we could consistently detect IBE.

4.1 | The Effect of Sampling Strategy on GEA
Analyses

Transect-based sampling resulted in lower detection ability
for GEA analyses (Figure 2). We believe that this is due to the
irregular distribution of geographic distances and potential
gaps in coverage of the environmental gradient caused by sam-
pling along transect lines. Otherwise, we found that the differ-
ences between schemes under individual-based sampling were
minor in most cases (e.g., absolute differences in TPR of <0.02;
Figure 2; Figure S5), likely because they all covered large parts of
geographic and environmental space. However, there are other
schemes which we did not evaluate, because they have known
inadequacies, such as highly clustered sampling or sampling
with large gaps, which we expect would exhibit substantially
worse performance than the schemes we tested here. Altogether,
we suggest that landscape genomic researchers may not need to
be too concerned about picking between sampling schemes (e.g.,
random versus E-space) so long as they gather enough samples
to sufficiently cover environmental and geographic space.

Differences between sampling schemes were more substan-
tial under site-based sampling, likely because there were gaps
in coverage of geographic and environmental space caused by
sampling fewer locations overall. For site-based sampling, we
found that E-space sampling resulted in significantly higher
TPR compared to random sampling (estimated difference of 0.03
for LFMM and 0.02 for RDA, p<0.001 for both; Figure 2; File
S6) and had comparable or higher TPR than grid-based sam-
pling (estimated difference of 0.02 for LFMM and 0.01 for RDA,
p<0.001 and p=0.21, respectively; Figure 2; File S6). These dif-
ferences were especially pronounced under the best conditions
for detecting GEAs (high autocorrelation and high migration);
for example, with RDA using 25 sites, the average TPR was 0.62
for E-space sampling and 0.55 for random sampling (File S6).
This is in line with findings of Lotterhos and Whitlock (2015)
who tested an analogous approach of sampling pairs that were
geographically close but environmentally distant and found
that sampling to maximise adaptive differences and minimise
neutral distances resulted in increased power for GEA. When
researchers are aiming to capture patterns across more than a
couple of environmental gradients, sampling to maximise envi-
ronmental coverage may be even more important.

We found that RDA had lower FDR than LFMM, while LFMM
had higher TPR than RDA (Figure 2; Figure S5). When the num-
ber of samples was small (i.e., less than 114 samples or 25 sites),
LFMM suffered from extremely high FDR (Figure 2; Figure S5).
In contrast, RDA had universally low FDR at large sample sizes
(more than 114 samples or 25 sites) and moderate FDR at small
sample sizes (Figure 2; Figure S5). Ahrens et al. (2021) sim-
ilarly found that LFMM had high false positive rates. Ahrens

90f13

85U8017 SUOWILIOD BAea1D 3|edldde ayp Aq pausenob aJe e YO ‘SN JO s3I 10} ARIqIT8UIIUO AB|IAA L (SUONIPUOD-PUR-SLLIBIALIOD" A |IM A RIq Ul UO//SANY) SUORIPUOD pUe SWB | 8L 885 *[5202/£0/60] U0 Ariq1TaulUO A8]IM ‘SeoIAeS Arlq)T 0150 AQ 250K T 8660-GGL T/TTTT OT/I0PALOD A8 |IM ARe.q1pulUO//:SANY Wo. papeojumod ‘€ ‘SZ0Z ‘8660S5LT



et al. (2021) also found that RDA was unable to detect any loci,
correctly or incorrectly, in their analyses, which is similar to
our findings that RDA had generally lower TPR and FDR than
LFMM. In terms of selecting between regular and pRDA, we
found that correcting for structure with PCs using pRDA re-
sulted in a loss of power, similarly to Forester et al. (2018) and
Lotterhos (2023). TPR for both methods increased with increas-
ing sample size and plateaued around 200 samples (Figure 2),
which is in line with findings by Forester et al. (2018), Oyler-
McCance, Fedy, and Landguth (2013) and Selmoni et al. (2020).
Our comparison between the relaxed versus strict TPR revealed
only minor differences between the two (average difference of
<0.01; File S6), demonstrating that these methods were able to
distinguish between the environmental variables driving se-
lection on each trait, even when the variables were correlated
(r=0.6). This is a promising finding as the ability to distinguish
between environmental drivers of selection in scenarios where
the variables of interest are correlated is of key interest in land-
scape genomics; however, we caution that at levels of environ-
mental correlation higher than those simulated here (r>0.6),
which can be the case for variables such as temperature and pre-
cipitation (File S2), it is still likely that GEA methods would not
be able to distinguish between the environmental drivers.

We were unable to detect almost any adaptive loci when migra-
tion was weak or when the environmental variables had low
levels of spatial autocorrelation (Figures S4 and S5). We found
that under low spatial autocorrelation, the signal of local ad-
aptation was much weaker based on phenotype-environment
and genotype-environment correlations, while under low mi-
gration, the signal of confounding population genetic structure
was stronger based on correlations between non-adaptive loci
and the environment (File S5). Even with large sample sizes, we
were unable to identify any loci correctly under these conditions
(Figures S4 and S5). In these scenarios, it is more conservative
to use RDA due to the lower likelihood of false discoveries.
However, if the goal is maximising the detection of adaptive
loci and the tradeoff of false discoveries is acceptable, we ad-
vise using LFMM, since RDA is unlikely to detect any loci at
all (Figures S4 and S5). Forester et al. (2016) similarly found
that higher levels of spatial autocorrelation corresponded to
stronger local adaptation and better GEA analysis performance.
However, while Forester et al. (2016) found that high dispersal
resulted in worse GEA analysis performance, we found the op-
posite effect (File S6). It is challenging to pinpoint the source
of this difference because our simulations have several key dif-
ferences; Forester et al. (2016) simulated a single adaptive locus
governing a single trait on a binary environmental landscape,
while we simulated multiple adaptive loci governing multiple
traits on continuous landscapes. A likely explanation is that we
did not simulate high enough migration rates to reach the level
of swamping gene flow described by Forester et al. (2016) and
that if we continued to increase the migration rate, we would
see similar results. In the same vein, it is possible that Forester
et al. (2016) did not uncover the strong confounding effects of
the population structure at lower levels of dispersal that we did
because a single adaptive locus of strong effect is easier to detect
than several loci with smaller effects (Lotterhos 2023).

A limitation of our results is that we did not evaluate the ef-
fects of different genetic architectures, although the prevailing

genetic architecture underlying traits that drive environmental
adaptation remains largely unknown. In general, polygenic ar-
chitectures comprising many alleles of small effect may be com-
mon in environmental adaptation (Savolainen, Lascoux, and
Merild 2013), but prolonged divergent selection may give rise to
‘clustered’ architectures, in which loci of small effect cluster into
tightly linked haplotypes of larger effect (Yeaman 2022). Our
simulations approximate these clustered architectures as an oli-
gogenic system. While we do not vary the numbers and effect
sizes of the loci involved, and thus do not explore the influence
of genetic architecture on our results, we expect doing so would
generate similar results to Lotterhos (2023): increasing polyge-
nicity would likely decrease the appearance of clear clines and
make GEA largely unsuccessful. Landscape genomic research-
ers should bear this in mind, as the genomic architecture un-
derlying ecological traits of interest is often unknown but may
frequently be polygenic (Savolainen, Lascoux, and Merild 2013),
presenting a significant hurdle for GEA.

Another caveat of our study is that we do not know how well
our simulated selection strengths align with real environmen-
tal selection, because the strength of environmental selection
in nature remains difficult to quantify. We controlled selection
strength in our simulations using the phenotypic selection coef-
ficient (¢). In geonomics, an individual's fitness is determined
by the product of ¢ and the degree of phenotype-environment
mismatch. We set the levels of ¢ at 0.5 and 1.0 to observe the
effect of halving the strength of selection. We found that weaker
selection corresponded to lower detection rates of adaptive loci,
as expected, and selection strength does not appear to have any
notable interacting effects with the sampling scheme.

4.2 | The Effect of the Sampling Strategy on IBD
and IBE Methods

Across all of the simulated conditions and sampling regimes,
we were able to detect IBD consistently using both MMRR and
GDM, even with as few as nine sites (Figure 3; Figure S7). For
MMRR, transect-based sampling resulted in higher error when
IBD was stronger (e.g., under low migration and high spatial
autocorrelation; Figure 3; Figure S7). For site-based sampling,
there were no notable differences between schemes for either
method, but grid-based sampling led to lower error for GDM
when IBD was weaker (e.g., under high migration and low spa-
tial autocorrelation; Figure 3; Figure S7). Error in estimating
the coefficient of IBD decreased with increasing sample size and
began plateauing around 225 individual-based samples and 25
site-based samples (Figure 3; Figure S7).

In contrast to IBD, detecting and estimating IBE proved to be
more challenging. We found that detection of IBE was most suc-
cessful when migration was low and spatial autocorrelation was
high, which makes sense given that these conditions create a
greater population genetic structure and stronger local adapta-
tion and therefore stronger IBE (Figure 4; File S7). When one of
these conditions (i.e., low migration or high spatial autocorrela-
tion) was met, but not the other, IBE was detected at intermedi-
ate frequency using MMRR but almost never using GDM (File
S7). When neither condition was met, IBE was rarely detected by
either method (Figure S9).
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GDM generally had much lower levels of detection for IBE com-
pared to MMRR (Figure 4; Figure S9). We believe that this differ-
ence may be due to how these methods determine significance.
MMRR calculates p-values based on permuting the rows and
columns of the genetic distance matrix, while GDM calculates p-
values based on permuting each predictor variable individually
(Fitzpatrick et al. 2022; Wang 2013). The GDM permutation test
is likely more conservative than that of MMRR. Despite these dif-
ferences in detection, the coefficients of IBE were strongly cor-
related between GDM and MMRR (r>0.6; File S6), suggesting
that estimates of IBE from the two methods are comparable.

To optimise the sampling approach for the detection and esti-
mation of IBE, we recommend using E-space sampling. E-space
sampling resulted in better or similar detection of IBE compared
to other individual- and site-based sampling schemes (Figure 4;
Figures S8 and S9). We suggest avoiding transect-based sam-
pling to detect and estimate IBE, as this scheme had higher error
in many cases, especially for MMRR (Figure 4). We recommend
that 100 or more individual samples or 50 or more sites be used
for detecting IBE with MMRR (Figure 4). For GDM, larger sam-
ple sizes are needed, but even with large sample sizes, IBE detec-
tion rates may be low (Figure 4; Figure S9).

5 | Conclusions

The performance of landscape genomic analyses is shaped by the
interactions among sampling strategy, population dynamics and
landscape structure. Through individual-based, forward-time
simulations on realistic landscapes, we show that, as long as sam-
pling covers sufficient environmental and geographic space, dif-
ferences between sampling schemes are likely to be minimal. To
optimise performance, we recommend using E-space sampling, as
it performs better than or comparably to other sampling schemes.
We also recommend avoiding transect-based sampling, which
consistently produces the worst results. We find that having over
100 samples, collected individually or by site, is essential for GEA
analysis and for detecting and estimating IBE, but is not necessary
for detecting and estimating IBD. When spatial autocorrelation
and migration are weak, RDA and LFMM fail to detect adaptive
loci, regardless of sample scheme and size, and when spatial au-
tocorrelation is weak and migration is strong, GDM and MMRR
fail to detect IBE, but still manage to detect IBD. Otherwise, when
spatial autocorrelation and migration are high and sampling ade-
quately covers environmental and geographic space, we find that
GEA methods are able to detect around 80% of the loci underlying
multivariate adaptation. Our results demonstrate the importance
of simulating complex population genetic and landscape scenarios
when evaluating sampling strategies, as the relative performance
of different strategies varied dramatically, and often idiosyncrat-
ically, under different conditions. Altogether, we show that land-
scape genomic practitioners should focus on maximising overall
sample size using any even sampling scheme, especially in scenar-
ios where the landscape structure is weak.
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