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The expansion of agroforestry could provide substantial climate change
mitigation (up to 0.31 Pg C yr™), comparable to other prominent natural
climate solutions such as reforestation. Yet, climate-focused agroforestry
efforts grapple with ambiguity about which agroforestry actions provide
mitigation, uncertainty about the magnitude of that mitigation and inability
toreliably track progress. In this Perspective, we define agroforestry as a
natural climate solution, discuss current understanding of the controls
on farm-scale mitigation potential and highlight recent innovation on
emergent, high-resolution remote sensing methods to enable detection,
measurement and monitoring. We also assess the status of agroforestry
inthe context of global climate ambitions, highlighting regions of
underappreciated expansion opportunity and identifying priorities for

policy and praxis.

Agroforestry — the incorporation and maintenance of trees in agri-
cultural landscapes — is a broad term encompassing a diversity of
Indigenous, traditional and modern farming practices'*. These can
range fromscattered trees in pastures or farmscapes, tolinear trees in
oraroundfields, to forest canopies grown above crops. Agroforestry’s
overarchingstrengthis its multifunctionality: adding trees to agricul-
tural lands can provide a variety of agronomic, socioeconomic and
environmental benefits’”. From a climate change perspective, one key
benefitis the potential for agroforestry to increase or protect carbon
storage on agriculturallands. This makes agroforestry a potential natu-
ral climate solution (NCS) — aland-use practice that sequesters carbon
or reduces emissions without reducing food and fibre production or
eroding biodiversity®.

Global estimates of the cost-effective mitigation potential of agro-
forestry range from 0.12 Pg C yr* (Griscom et al.%; 95% confidence inter-
val, 0.05t0 0.21 Pg C yr™) to 0.31Pg C yr* (Roe et al.’; uncertainty not
estimated), making it the largest agricultural NCS opportunity, com-
parable to other prominent NCSs such as reforestation (0.27 Pg C yr™)
and reduced deforestation (0.49 Pg C yr™)°. Many nations intend to
use agroforestry to reduce their net greenhouse gas emissions, with
40% of non-Annex I nations including agroforestry in their nation-
ally determined contributions (NDCs) under the Paris Agreement’’.
Moreover, global agricultural lands already contain substantial woody
carbon —though point estimates range widely, from 6.93 Pg C (above-
ground carbon") to15.77 Pg C (aboveground” ™) to 37.12 Pg C (above
and belowground®™'®) (Supplementary Methods). This carbon may be
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concentrated on a small fraction of global land (<10% of agricultural
lands are estimated at >5 Mg C ha™ of woody biomass"), suggesting
substantial opportunity to both conserve and expand trees within
agricultural lands.

Global synopses are useful, but they are highly variable, are based
on coarse assumptions, and thus cannot provide the mitigation esti-
mates needed to inform specific land management practices. Many
studies have synthesized farm-scale estimates for that purpose'” ¥,
arriving at broad agreement that agroforestry adoption canincrease
carbon storage’, yet providing little clarity about how much. These
uncertain estimates of mitigation potential, paired with the poor ability
topredict changesincropyield, revenue, ecosystemservices, and other
co-benefits and trade-offs of agroforestry, limit farmers’and ranchers’
ability to make informed management decisions. Finally, the lack of
robust, standard methodologies for monitoring, measurement, report-
ing and verification (MRV) limits farmers’ access to climate-focused
incentive mechanisms such as carbon markets or government funding.

Agroforestry has clear and viable NCS potential®®, but large uncer-
tainties, knowledge gaps and technical hurdles remain, hindering
deploymentand expansion. In the couple of decades since pathbreak-
ing reviews of agroforestry carbon sequestration®®*~*, substantial
advances have been made in scientific understanding, dataavailability,
technical capacity and climate ambition. Here we take stock of these
changes to help prioritize research and inform action during this deci-
sive decade for constraining climate change. We review the state of
our knowledge about agroforestry as an NCS (henceforth, AF-NCS)
to answer four key questions: (1) What is AF-NCS? (2) How well do we
understand its mitigation potential, and how can that beimproved? (3)
How can agroforestrylocations and practices be mapped, and how can
itsextentand carbon density be monitored? (4) What other information
andincentives will best support agroforestry adoption and expansion?

Defining agroforestry as anatural climate
solution

Agroforestry is a land use, typically defined on the basis of manage-
ment practices, species composition or other agro-ecological char-
acteristics**. By contrast, an NCS is a land-use change, defined by the
ability to mitigate climate change without decreasing food security
or biodiversity. Not all land-use changes that result in agroforestry
provide climate change mitigation —indeed, some agroforestry transi-
tions can even increase atmospheric greenhouse gas concentrations
(Fig. 1). Yet this is often overlooked, because the lack of an explicit
definition of AF-NCSincorrectly implies thatall agroforestry practices
are NCSs. Here, by applying three refinements to common agroforestry
definitions, we circumscribe the subset of agroforestry transitions
that qualify as AF-NCS.

First, existing agroforestry definitions describe systems combin-
ingwoody species (thatis, shrubs or trees; hereafter ‘trees’), non-woody
crops or forage (hereafter ‘crops’), and/or livestock. This definition
does notconsider whether trees are intentionally managed, butinten-
tionality is critical for determining whether management decisions
provide credible climate change mitigation. If an intentional NCS
effortleadstotreeincorporation or maintenance that would not have
occurred under business-as-usual conditions, then it satisfies the
principle of additionality and thus provides real mitigation. Though
additionality can be challenging and costly to demonstrate®, it is essen-
tial for ensuring the effectiveness of an NCS policy or intervention.

Second, existing agroforestry definitions often describe cur-
rent practices without reference to prior land use, but not all agro-
forestry transitions benefit the climate*. For example, thinning or
clearing of forest to establish agroforestry generally causes carbon
losses'”*, whereas establishing or enhancing tree cover on open
farmland generally stores carbon*® (Fig. 1, ‘Adoption” and ‘Change in
management’). This means that two agroforestry systems could look
similar, but their establishment could cause opposite climate forcing.

Similarly, if a farmer maintains some percentage of tree cover that
would otherwise have been entirely removed, this act of protection
provides mitigation from avoided emissions (Fig. 1, ‘Risk of removal’).
Baseline setting thus helps ensure that climate-focused agroforestry
efforts provide mitigation — though the questions of who sets abase-
line, how, and when remain open and important ones, with potential
equity implications®.

Finally, agroforestry definitions often focus onintermixing trees
with crops and/or animals, thus excluding tree-only practices that can
provide carbon storage within agricultural landscapes. For example,
some diversified farming systems may be excluded from agrofor-
estry definitions because trees and crops occur as discrete patches
within mosaics (for example, satoyama landscapes® and parcelized
cut-and-carry systems®) rather than as fully intermixed production
systems. Agricultural tree monocrops, such as orchards without crops
oranimals, are even more likely to be excluded from common agrofor-
estry definitions. Yet the adoption, expansion or retention of these
systems may increase net carbon storage on agricultural land®. Thus,
although these systems are sporadically defined as agroforestry**, we
include them within our definition of AF-NCS.

Given the above, we define AF-NCS as ‘the intentional establish-
ment, increase or maintenance of trees in agricultural landscapes,
providing additional net carbon storage against a business-as-usual
baseline, without causing net reduction of current food and fibre
production or negative impacts on biodiversity’. This definition refines
standard agroforestry definitions to circumscribe the agroforestry
practices that are likely to provide climate change mitigation, and it
integrates the NCS definition®to preclude negative food security and
biodiversity outcomes (for example, the replacement of diverse native
grasslands withagroforestry). It provides afirst-order approximation
of the climate impacts of agroforestry interventions, but accurate,
site-specific estimates will require careful assessment of net carbon
dynamics, non-carbon climate forcing and other accounting challenges
(discussed in the following section).

Estimating the mitigation potential of
agroforestry

Inthe past decade alone, there have been more than 20 synthetic stud-
ies quantifying agroforestry carbon stocks and fluxes” . These efforts
have primarily focused on carbon in aboveground and belowground
woody biomass (AGB and BGB) and on soil organic carbon (SOC), and
they consistently demonstrate substantial mitigation potential. How-
ever, carbon estimates vary widely across these studies, indicating a
knowledge gap about the controls on farm-scale carbon sequestration
and storage. This makes it challenging to accurately estimate mitiga-
tion potential at existing AF-NCS sites (because direct measurement
is often cost-prohibitive) and at potential sites under consideration.

Some of this variability stems from methodological disparity.
These studies vary in geographic focus and extent, quantitative
methods, and data quality and criteria for inclusion. Perhaps most
importantly, and typical of meta-analyses on similar topics®, they
feature limited sample sizes drawn from disjoint subsets of the total
available literature: across the 21 prior analyses we reviewed, 66% of
the 536 primary studies used appear only once, and just three primary
studies®* ¢ appear in 8 of the 21, the maximum number of repeat cita-
tions (Supplementary Fig. 1). With existing reviews basing their conclu-
sionsonsmall portions of the available data, understanding of AF-NCS
mitigation potential remains limited.

Syntheses can also omit factors that could be key drivers of vari-
ation in agroforestry carbon storage, including bioclimate, species
choice, planting density and management regime (Supplementary
Table 1). Instead, previous syntheses usually stratify mitigation esti-
mates by agroforestry practice, sometimes with coarse subdivision by
asecond covariate (for example, climate”). This is sensible, given the
needto organize the vast diversity of treed agricultural systemsintoa
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Fig.1|Land-use change and carbon outcomes determine whether
agroforestry is an NCS. If agroforestry does not exist before the baseline, then
agroforestry adoption serves as an NCS when it increases woody and soil carbon
storage withoutimpacting biodiversity (left). If agroforestry exists at the time
of baseline establishment, changing agroforestry management can serve as an
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NCSifitincreases tree biomass or proportional tree cover in static or rotational
agroforestry systems, thus increasing carbon storage (middle). Alternatively,
conservation of some or all trees can serve as an NCS if those trees would have
beenremoved under business-as-usual conditions, such that their maintenance
leads to avoided emissions (right). Figure adapted from image by Vin Reed.

tractabletypology. But because these typologies reflect management,
notcarbon dynamics, they explain alimited amount of site-to-site vari-
ationinmitigation potential. For example, ‘silvopasture’ (thatis, trees
on grazing lands) could describe systems ranging from occasional,
scattered treesin pasturesto livestock grazing under aclosed canopy —
systems that vary widely in aboveground carbon density.

Asaresult, estimates of carbon storage potential in prior studies
have high uncertainty. For example, the carbon stock change datacom-
piled by Cardinael et al.” to develop IPCC Tier 1 emission factors exhibit
more variation within than between practices, with nearly 100-fold
variationinsilvopasture (Fig. 2 and Supplementary Methods). However,
some coherent patterns appear when comparing how aboveground
woody carbon (AGC) and SOC stocks change across practices (Fig. 2).
Theincreasein AGCis greatestin multistrata systems (which can have
dense and complex canopies) butis more variable insilvopasture (with
its broad structural diversity) and is lower in the systems typified by
scattered trees. Patterns in SOC are less clear, but SOC appears lower
onaveragein systems thatare more likely to be regularly disturbed by
ploughing (that is, intercropping and silvoarable). Nonetheless, the
large overlap of estimates between agroforestry types demonstrates
how coarse categorical analysis and limited sample sizes can limit the
utility of mitigation potential estimates.

Process-based simulation models provide an alternative approach
to understanding agroforestry carbon dynamics®, allowing for tem-
porally and/or spatially explicit accounting of various carbon pools.
However, these models may have limited utility for estimating AF-NCS
mitigation potential because their structural and parametric complex-
ity can restrict them to certain regions (for example, COMET-Farm®®)
or crops (for example, DynACof*) or require costly parameterization

(forexample, CO2FIX°). However, such models can be valuable when
they match the systemtype, geographic context and accounting needs
of aparticular AF-NCS action.

As apath towards a generalized and comprehensive understand-
ing of agroforestry mitigation potential, we propose a data-driven
approach: a statistical model based on a database of all previously
published, field-derived estimates of carbon stocks and fluxes, com-
bined with all available information on the potential controls on that
variation. The results would support everything from private project
development to national emissions reporting and could even find
added value from harmonization with complementary datasets (for
example, any national forest inventories containing agroforestry sites).
Calls for such a database have long been made'®”*'. We are therefore
developing this database as a publicly available resource representing
an exhaustive, multilingual sample of the white and grey literatures.

While this effort will help elucidate some of the principal controls
on carbon storage in agroforestry systems, further progress could
come from improvements in the content, quality and geographic
coverage of newly reported data*"*. One key improvement would be
standardized reporting of plot-level and site-level variables that are
possible predictors of carbon storage (see Supplementary Table 1 for
potential candidates). For example, bioclimate controls AGB in both
natural forests®® and agroforests”**, but imprecise geocoordinatesin
primary studies hinder climatic characterization of sites. Management
variables (including pruning regimes, tillage depth and frequency,
and rotation cycle lengths) are likely to influence carbon storage, so
they could also be reported in a standardized and detailed way*>**.
Other potentially important but often unreported variables include
tree age distribution and species®. Ultimately, detailed descriptions
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Fig. 2| Carbon stock changes after agroforestry adoption vary within and
across practices. Comparison of changes in AGC and SOC after agroforestry
adoption, using data from Cardinael et al.”. Kernel density estimates (KDEs)
show the distributions of stock changes (log;,-transformed for readability) for
AGC (upward-facing KDEs) and SOC (downward-facing KDEs) after agroforestry
adoption. The practices are ordered from top to bottom from the lowest to the
highest median AGC (black ticks). The sample sizes are shown in black on the
left. Negative SOC stock-change values are omitted from the KDEs because they
arerare and cannot be log-transformed. Instead, the number of negative values
omitted is displayed in red on the left, and the medians including negative values
are displayed as red ticks. The following are brief descriptions of the systems (see
Table1in Cardinael et al.” for more details): intercropping involves rows of fast-
growing woody species, usually pruned as mulch for the crop rows in between
and usually tropical; fallow involves sequential systems, featuring both natural
and improved fallows; silvoarable involves rows of woody timber or fuel species
with crop rows in between, usually temperate; silvopasture involves woody
species planted on permanent grass or grazing lands; and multistrata involves
one or more shade-tolerant crops grown under one or more layers of canopy,
including both shade-grown commercial crops (for example, coffee and cacao)
and home gardens.

of the agroforestry systems in each carbon-reporting primary study
would provide maximum information for statistical modelling and
thus accelerate the systematic determination of the key controls on
mitigation potential.

Methods for agroforestry carbon measurements could also be
improved. For AGB, this could come from the use of agroforestry-
specificand species-specific allometric equations, given thataccurate
but costly and destructive whole-tree sampling is rarely employed*.
Allometricequations derived from forest trees canintroduce bias when
the same equations are applied to open-grown agroforestry trees®*®".
Likewise, direct measurement of BGB is expensive and difficult, so
BGB is typically estimated using root-shoot ratios instead, which are
also often based on forest-grown and/or unmanaged trees®®. However,
previous work has demonstrated that root-shoot ratios in agricultural
systems can be influenced by increased light availability® or by inten-
sive agricultural management’ and that rooting depth and distribu-
tion can be altered by crop competition”, suggesting that further
research is needed to understand how well default root-shoot ratios
reflect BGB dynamics in agroforestry. Finally, while many AGB and BGB
assessments will continue to rely onfield-collected tree measurements,
terrestrial, drone-based, aerial and even satellite-based remote sens-
ing methods are becoming increasingly accurate and accessible™ 7,

A variety of improvements could also be made to SOC measure-
ments. Although agroforestry studies often quantify SOC, many fail to
provide areference measurement (that is, either before agroforestry

adoption or at an adjacent non-agroforestry plot with the same
land-use history). Studies that do provide a reference measurement
(for example, Cardinael et al.””) show that SOC generally increases,
though not always (Fig. 2), highlighting the critical importance of a
reference against which to determine the direction and magnitude of
change. Increased measurement of fine-scale spatial heterogeneity
in SOC will also enable more accurate plot-level estimates, given the
variation sometimes observed on small scales (for example, between
rowsand alleysinintercropping systems**”). Additional improvements
could come frommeasuring deeper into the soil profile thanis typical
(thatis,>100 cm; for example, Cardinael etal.”®), partitioning SOC into
particulate and mineral-associated sub-pools to better understand
residence times***, and using an equivalent soilmass approachin lieu
of afixed-depthapproach, to better account for the effect of land use
onsoil bulk density””.

Afull assessment of the mitigation potential of agroforestry may
also require accounting for additional factors that are infrequently
considered but potentially important. These include litter, coarse
woody debris, and other dead-matter pools; CH, and N,O fluxes'’%;
and socio-ecological feedbacks (for example, fuel-wood use’).
Non-greenhouse-gas dynamics, such as land-use-change-induced
biogeophysicalforcing resulting from changesinalbedo, evapotranspi-
rationor cloud dynamics, are also poorly understood but may influence
net mitigation potential, especially in semi-arid and boreal regions®®®’,

Durability, or permanence, is another critical consideration, given
that many agroforestry trees will not persist for the century-scale time
frames targeted by many forest MRV protocols but instead may turn
over on time frames closer to those laid out in newer SOC MRV proto-
cols®. Estimates of durability are poorly constrained and sometimes
biased, even for forest trees®, and are only further complicated by
non-stationary disturbance regimes under climate change®. Agro-
forestry trees, protected as an economic investment, could be less
vulnerable to natural disturbance than unmanaged trees®, but they
could also have lower temporal durability because of wood extraction,
declinesin production or land-use change.

Finally, leakage is critical to NCS accounting. Leakage dynamics
could reduce the mitigation of agroforestry, if agroforestry reduces
cropyield and thusleads to additional land clearing. However, reverse
leakage could increase agroforestry mitigation, if increased local
fuel-wood production decreases fuel harvesting in nearby ecosys-
tems® or if increased land-equivalent ratios improve food security
on already-cleared land®’. Leveraging synthetic-control methods to
measure rates of deforestationin regions with and without agroforestry
adoption, as has been done for protected areas®, could help clarify the
landscape-level outcomes of agroforestry transitions.

Mapping and monitoring agroforestry
Knowledge of where agroforestry occurs and how much carbonit stores
is foundational to many of the scientific needs underlying AF-NCS
implementation efforts. These include improved estimates of mitiga-
tion potential and expansion potential, and establishment of baseline
tree cover extents and loss rates for MRV. However, current understand-
ing of the spatial distribution of agroforestry is weak, with estimates
of the global agroforestry extent varying fourfold, from 400 Mha
(ref. 89) to 700 Mha (ref. 12) to 895 Mha (refs. 16,90) to 1,600 Mha
(ref. 41). Most agroforestry mapping methods rely on remote sensing
products, often by combining tree cover or AGB maps with agricultural
land-cover maps™">'° or by attempting to detect and classify forest
management practices”. However, the structural variety of agrofor-
estry systems, includingboth scattered trees outside forestsand trees
within agricultural forests (Supplementary Fig. 2), complicates map-
ping methodologies'® and can introduce bias.

For example, the data from Chapman et al." (hereafter the
‘Chapmanmap’), despite being the most comprehensive global attempt
to map agroforestry, excludes locations with >25% tree cover because

Nature Climate Change | Volume 13 | November 2023 | 1179-1190

1182


http://www.nature.com/natureclimatechange

Perspective

https://doi.org/10.1038/s41558-023-01810-5

, ;. ™ de . ee
. . (] &’ - f;'{ S
£ d Tk Ve .
!: (P L} ., - “0-."
o8, . %%
! '3' 'fﬂ‘. '- 3
3 e L] i N
‘ . .. " [}
L e e
‘. * L L4 '."‘
« Ve ‘1.-‘: ‘. A .
a1 g . -. - °
ey 'n" *
2.9 °
. * y )
0 100
0 5 10 15 20 25 30 35 40  overlap (%)

Woody C density (Mg C ha™)

Fig.3|Global comparison between remote sensing of agroforestry and site
locations gathered from literature. The global distribution of woody carbon
density in agricultural lands (grazing lands and croplands) is shown for the year
2000. Following the methodology of ref. 11, we distinguish land with densities
>5Mg C ha™as ‘agroforestry’ and depict carbon density in those locations with
anincreasing green scale. Known agroforestry locations (n = 992) pulled from
528 primary studies (Supplementary Methods) are overlaid as black circles for

sites that overlap with our 3-km-aggregated Chapman dataset and as pink circles
for the remaining sites that do not overlap. In the right panel, we display the
percentage of known agroforestry sites covered by the map within a latitudinal
sliding window, showing that the majority of the missed sites are clustered
within moist tropical and subtropical regions (Supplementary Methods). Figure
adapted with permission fromref. 11, Wiley.

oftheinability to distinguish closed-canopy agroforestry (for example,
multistratasystems) fromnon-agricultural forests. This methodologi-
calchoice, thoughinevitable, disproportionately omits datainregions
where agroforestry tends to be closed-canopy (for example, the moist
tropics; Fig. 3). Because closed-canopy systems tend towards higher
AGC (Fig. 2), this leads to underestimates of carbon storage potential
that propagate through to IPCC and peer-reviewed analyses®*®. Indeed,
remote sensing estimates of agroforestry AGC appear 65% lower within
the Chapman map onaverage (12.5 Mg C ha™ versus 36.2 Mg C ha”when
comparing Cardinael et al." sites that overlap with the Chapman map
with all Cardinael sites), and field measurements are 51% lower when
making the same site comparison (11.0 Mg C ha'versus24.9 Mg Cha;
Supplementary Fig. 3 and Supplementary Methods).

Agroforestry systems often feature small plot sizes with fine-scale
heterogeneity in tree cover and thusin carbon density, limiting the util-
ity of best-available, moderate-resolution (30-metre) global datasets.
These small plot sizes are exemplified by the fact that the low precision
of many published study site coordinates (less than half of the studies
we reviewed report coordinates to at least three decimal places of
coordinate precision (-110 m; Fig. 4a) makes it difficult to confidently
identify the corresponding agroforestry plots within aerial imagery
(such as the Latin American coffee system in Fig. 4b). Their fine-scale
heterogeneity (for example, Fig. 4b) results in a large discrepancy
between field-derived and remotely sensed carbon estimates (Supple-
mentary Fig.4) —one with limited room forimprovement by increasing
temporal (Supplementary Fig. 4) or spatial (Supplementary Fig. 5)
alignmentbetween field-derived and remote sensing datasets. Primar-
ily,improved mapping and MRV will probably require increased spatial
resolution that matches or exceeds the characteristic heterogeneity of
the systems being monitored. Insome systems, effective MRV may also
require temporal resolution sufficient to detect complex AGC dynam-
ics (for example, the two periods of biomass accumulation observed
inFig. 4c) orimproved spectral resolution to improve discrimination
between target agroforestry systems and other land cover.

Fortunately, the trend towards higher-resolution, machine-
learning-based mapping promises substantial progress. One major area

of work is in detection, which can help answer the question of where
agroforestry occurs. This can be particularly important for regional
or jurisdictional efforts, for which the locational information that is
a prerequisite for MRV may not be readily available. The structural
heterogeneity across agroforestry systems (Supplementary Fig. 2)
poses asubstantial challenge for detection and typically means that dif-
ferent methods are used to detect open-canopy versus closed-canopy
agroforestry systems.

The detection of open-canopy agroforestry systems can utilize
methods for mapping trees outside forests. These methods can map
dispersed tree cover even when the canopy area of individual trees
is smaller than the nominal pixel size of moderate-resolution data-
sets. This has revealed numerous examples of dispersed tree cover
that was systematically overlooked in previous analysis’ . Some
trees-outside-forests algorithms use global, publicly available satel-
liteimagery of the highest available resolution (for example, 10-metre
Sentinel data®> %) to estimate tree cover in non-forest landscapes.
Others use high-resolution (for example, between 5 and 0.5 metres)
imagery, fromregional aerial campaigns or from commercial satellite
archives, to delineate and countindividual trees’>*°, Both approaches
have their strengths and drawbacks, and both could be useful starting
points for developing methods to distinguish open-canopy agrofor-
estry trees from other trees outside forests (that is, to distinguish
between thelight and dark yellow segmentsin Supplementary Fig. 2).
Some precedent exists for this”’, but much work remains to be done.

Because there is little spectral signature distinction between
closed-canopy agroforests and non-agricultural forests (that is,
between the light and dark green segments in Supplementary
Fig.2),these twoland-cover types are challenging to distinguish. Recent
approaches thus tend to analyse higher-resolution data with sophis-
ticated methods, including time-series analysis’®, analysis of non-
opticalimagery (for example, synthetic-aperture radar (SAR)*°), deep
learning'° and data fusion'”. Much work is still needed to discoveraccu-
rate, generalized solutions'”, but thisis an active research area. Recent
work demonstrating that a tree-delineation algorithm developed for
trees outside forests’* can also delineate trees within forests’ suggests
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—— Two decimal places = ~1.1 km precision (79.2%)
— Three decimal places = ~110 m precision (46.0%)

Tree cover

30 m (Landsat)

10 m (Sentinel)

<1 m (CNES/Airbus)

5 m (Planet)

2000

Fig. 4 |Importance of spatial precision, spatial resolution and temporal
dynamics in remote sensing of agroforestry. a, Spatial precision: regional
aerial image of the surroundings of a Latin American coffee agroforestry system
exploredinband c. Theimage is annotated with radii depicting increasing levels
of decimal-degree precision (expressed in approximate metres at the equator)
associated with geographic coordinates collected from 465 primary studies that
measured agroforestry carbon (increasing from one decimal place (that s, -11 km
precision), in light purple; through two decimal places (that is, ~1.1km), in purple;
to three decimal places (that is, ~110 m), in dark purple). In the legend, we display
the percentage of field sites reported at each of the three levels of precision.
Without high precision, itis difficult to confidently identify study systems in
aerial imagery or to use previously published estimates as training data for

2021

Year

spatial modelling efforts. b, Spatial resolution: the coffee agroforestry system
indicated by the grey box ina, shown in remote sensing imagery of increasing
resolution. Allimages are from the same roughly one-month period (Landsat,

10 March 2021; Sentinel, 24 February 2021; Planet, February 2021; CNES/Airbus,
February 2021). ¢, Temporal dynamics: the coffee agroforestry system fromb,
shown in a multi-year time series of publicly available Maxar/CNES/Airbus aerial
imagery, all captured during the same three months of the year. Approximate
tree cover trajectory is visualized as a purple line. The image labelled 2021’ is
identical to the 2021 image inb. If only 2001 and 2014 imagery were available, the
time-averaged tree cover would be overestimated, whereas if only 2001 and 2015
imagery were available, the time-averaged tree cover would be underestimated.
Image inaadapted from Google Earth © 2023 Maxar Technologies/CNES/Airbus.

the possibility of detecting agroforestry systems across a range of
tree densities.

Detection is only the starting point for reliable monitoring and
measurement. Except for the minority of projects that fund field-based
protocols, this will probably depend on remote sensing. And given
the coarseness and uncertainty of agroforestry emission factors,
remote-sensing-based monitoring will probably require not only

tracking agroforestry extent over time but also estimating carbon
stocks and their temporal changes. Efforts are already underway to
improve methods for estimating AGB and AGC using publicly avail-
able data fromspace-based optical, lidar and/or SAR sensors'*>. These
state-of-the-art products may have improved accuracy, enabling more
accurate and more frequent estimation of incremental stock changes
over time. However, their moderate resolution will probably still fail
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to capture the fine-scale spatial heterogeneity of some agroforestry
systems, for the reasons discussed above. One alternativeis the applica-
tion of similar methods to higher-resolution satellite, aerial or drone
imagery'®, producing pixel-based carbon stock change estimates that
may better align with field-based values. Another is the combination of
high-resolution tree-delineation methodologies with location-relevant
tree allometrics, providing the novel ability to make tree-by-tree stock
change estimates’'°*'%, For SOC, the other major pool of interest,
estimates are not only limited by coarse spatial scale and consider-
able uncertainty but are also predominantly detectable only in open
cropland'®, so progress is likely to depend on some combination of
improvements in statistical and mechanistic modelling.

Higher resolution will doubtless play arole inimproving AF-NCS
mapping and MRV. However, efforts to use high-resolution data will
need to navigate the analytical trade-offs that can arise — limited
spectral and temporal resolution or spatial extent, increased data
volume or processing time'°®, and complications caused by image
variability within single tree crowns'”’. They will also need to handle
the common challenges of accessibility of quality, cloud-freeimagery,
technical capacity, and affordability of data acquisition and com-
putation. Ultimately, high-resolution MRV systems may need to be
developed and parameterized on a regional and case-by-case basis,
especially given the potential for variability in monitoring needs and
objectives (for example, some applications may wish to distinguish
tree monocrops (such as orchards and woodlots) from trees inter-
cropped with food or fodder'®®, or to identify rotational systems using
change detection methods'?). Purpose-built workflows could ben-
efit from the ability to develop unique, strategic analyses combining
higher spatial-resolution and/or spectral-resolution optical datasets,
object-based tree-inventory approaches, lidar or SAR imagery, tex-
ture metrics, and/or phenology®”'®, but such analyses would require
substantial technical investment. Meanwhile, for regions where such
investment remains cost-prohibitive, as well as toimprove the world-
wide perspective on AF-NCS, the development of a coarser but global
agroforestry monitoring system (akin to Global Forest Watch™) could
be aworthwhile objective.

Potential and implications of agroforestry
expansion

To help motivate and spatially prioritize investment, multiple studies
have estimated or mapped the global mitigation potential of AF-NCS.
These efforts have focused on modelling locations where agrofor-
estry is biophysically possible, only sometimes adding constraints
to maintain crop yield or ensure cost-effectiveness®**". These results,
aggregated to the globe, suggest that cost-effective potential is as
high as 1.12 Pg CO, yr™' (ref. 9), placing agroforestry among the most
promising NCSs.

Combining these estimates of mitigation potential’ with data
on contemporary woody carbon density in agricultural lands", NDC
ambitions'®" and levels of economic development'? provides a telling
look at the global status of AF-NCS. Potential additional agricultural
woody carbon density is dramatically higher than current density onall
continents except Africa, where contemporary woody carbon density is
closetothe modelled capacity in many regions (Fig. 5a). Furthermore,
woody carbon density is significantly higher in countries that mention
agroforestry in their NDCs (n = 81) than in those that do not (n = 81;
Welch’s t-test, P=1.92 x107%), yet potential additional density shows
nosuchdifference (P = 0.397; nypc = 80, Myonnnc = 77). Given the general
inverse relationship between economic development and agricultural
tree cover, much of the global opportunity lies in Global North coun-
tries, which rarely mention agroforestry in their NDCs despite being
among the highest-potential nations (Fig. 5b).

This mismatch between potential and ambition suggests that
agroforestry awareness is greatest in nations where trees remain
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Fig. 5| Variationin current and potential additional agroforestry

carbon storage. a, For each continent, the distributions of circa-2000
(‘current’, solid boxes; data from country estimates in Chapman et al.")

and potential (transparent boxes; data from Roe et al.”) agroforestry

carbon density are depicted as box plots (with a median centre line,

first-and third-quartile box limits, whiskers extending to 1.5x the interquartile
range, and outliers plotted outside them), differentiating countries that
mention agroforestry in their NDCs (white columns) and those that do

not (grey columns) using agroforestry NDC data from Rosenstock et al.”?,
supplemented with data from the International Union for Conservation

of Nature™. Two continents (North America and Oceania) have no countries
that mention agroforestry in their NDCs and so have bold Xs displayed

inthe corresponding columns. b, Countries’ year-2000 log-transformed
average agriculturalwoody carbon density" versus year-2000 Human
Development Index (HDI"?). While the relationship varies across continents,
the overall relationship is negative and significant (P < 0.0001; the trend line
isfitted asasimple linear regression and plotted within its 95% confidence
interval). The countries are colour-coded by continent (asina), styled by whether
or not they mention agroforestry in their NDCs (circles for yes; crosses for no)'*™",
and sized by modelled cumulative AF-NCS mitigation potential by

2050°. Countries in the 95th percentile of cumulative mitigation potential

are labelled in black.
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a dominant feature in agricultural landscapes. This highlights a
need to promote a broader understanding and awareness of the
value of agroforestry across diverse economic, social and cultural
contexts. Much of agroforestry research has focused on developing
small-scale systems thatimprove economic outcomes and increase
the food and climate security of the rural poor. However, there s also
aneed to continue developing and expanding viable mechanized
agroforestry systems in regions with expansive, monocrop agri-
culture, to increase carbon storage and support biodiversity and
ecosystem services*'*, Because broad-scale agroforestry adoption
may impose costs (for example, more complicated management and
longer pay-offtimes for tree crops versus annual crops), especially
in temperate climates, there is a need for targeted research aimed
atloweringbarriers to adoption. The growing appetite for NCSs to
meet net-zero commitments™* might present an opportunity for
the private and public sectors to catalyse essential research and
developmentin this area.

The future of AF-NCS will depend on the improved incorporation
of agroforestry into MRV systems and thus incentive mechanisms,
across sectors and geographic scales. In national emissions inven-
tories, agroforestry reporting is typically piecemeal and uncoor-
dinated, primarily because the diversity of agroforestry systems is
divided between the two categories of ‘Agriculture’ and ‘Land Use,
Land Use Change, and Forestry’ that comprise the IPCC approach to
Agriculture, Forestry, and Other Land Use (AFOLU) accounting, and
further subdivided across nationally defined land-use types within
them'. The result is a complete lack of standardization and a near
invisibility of agroforestry across NDC reporting streams'’. Remote
sensing can provide the most reliable and globally consistent source
of AFOLU activity data, but, as discussed above, open-canopy and
closed-canopy agroforestry systems pose major and distinct chal-
lenges. Emergent tree-based remote sensing methods may signal a
globally consistent approach to comprehensive AFOLU emissions
accounting™, and the development of an algorithm that can detect
the full diversity of agroforestry systems could provide a unified
home for agroforestry within that, while also reducing dependence
onstill-uncertain emission factors. That, inturn, could provide trac-
tion for the further integration of AF-NCS into incentive mecha-
nisms for land-based mitigation efforts, especially in developing
nations, where agroforestry already makes a major contribution to
the production of food, fodder, fibre and forest products. Examples
of such mechanisms include not only voluntary carbon markets but
also national™ and regional® government programmes, as well as
the most prominent international mechanism, REDD+. Despite the
heavy focus of REDD+ on natural forests, 17.5% of projects ina public
database already utilize agroforestry””’, and emergent jurisdictional
initiatives that promote agroforestry signal growing opportunity (for
example, in Acre, Brazil"®). Improved ability to monitor agroforestry
adoption could enable the integration of AF-NCS actions into broader
programmes and frameworks, such as the Bonn Challenge and the
forest landscape restoration paradigm'.

Regardless of improvement in policy frameworks, the future of
AF-NCS on the ground ultimately hinges on the decisions of many
individual farmers and ranchers to adopt or maintain agroforestry.
This, in turn, depends on local decision-making contexts that enable
andincentivize agroforestry and minimize barriers. Governments and
non-state actors wishing to promote AF-NCS must continue developing
research, policies and programmes to address the various barriers and
enablers, including land-tenure rights and security, access to techni-
cal knowledge and training, credit access and short-term funding,
market development and access, and market failures and misaligned
incentives*"'*, From an NCS perspective, the fact that agroforestry
climate mitigation is predominantly a public benefit, rather than a
private benefit to the farmer, creates amarket failure that canserveasa
major barrier'?’. Carbon markets and other payment schemes can help

rectify this, transmuting public benefits into private ones'* — especially

as agricultural MRV protocols mature®. However, many of the other
potential agroforestry benefits may accrue to farmers directly and
thus more directly influence their decisions?>'?*, Enthusiasm about
the many potential benefits of AF-NCS is justified but must be paired
with recognition that the actual outcomes of agroforestry adoption
are complex and context-dependent’® and can impose important
trade-offs. Realistic knowledge of outcomes is frequently lacking'?°,
but mechanistic modelling®”’, meta-analysis®’ and local co-development
of applied research''* will all play important roles in generating the
knowledge needed to inform farmers’ decisions about whether and
how to adopt agroforestry.

Conclusions

Decades of research demonstrate agroforestry’s potential to help miti-
gate climate change while alsoimproving agricultural livelihoods and
sustainability. However, an extensive and prioritized scientific effort
is needed to transition AF-NCS from potential to practice. Synthesiz-
ing existing knowledge to elucidate the factors driving the climate
outcomes of agroforestry actions is a first critical step. Simultane-
ously, improved reporting of carbon stocks and covariates can help
further reduce the uncertainty of mitigation estimates. Improvements
inremote sensing methods and in the quality and quantity of spatial
datawill enhance agroforestry mapping abilities, opening opportuni-
ties todevelop morerigorous, replicable and consistent MRV protocols.
Finally, the successful expansion of AF-NCS will depend on an outsize,
decentralized efforttoincentivize agroforestry investment and remove
barriers, not only in developing nations but across all suitable agricul-
tural lands. Agroforestry’s greatest strength is its multifunctionality.
Agroforestry not only has the potential to provide climate change
mitigation — the focus of this Perspective — but also can play a crucial
rolein a holistic, systemic response to climate change, supporting
adaptation and enhancing the resilience of the global food system
while improving rural livelihoods.

Data availability

All data used in this study are publicly available from their original
providers viathe supplementary materials and/or requests to the cor-
responding authors of the originating peer-reviewed publications,
except the summary data we gathered about previous agroforestry
meta-analyses and the agroforestry site geographic coordinate data
that we collected from the primary literature. We have made all data
availableinour GitHub repository (http://github.com/naturalclimates-
olutions/AF_as_NCS; https://doi.org/10.5281/zenod0.8209212).

Code availability
Allcode usedfor this study is provided at http://github.com/naturalcli-
matesolutions/AF_as_NCS (https://doi.org/10.5281/zenod0.8209212).
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SUPPLEMENTARY METHODS
Overall

The concepts and content for this paper developed out of a workshop “Agroforestry as a Natural
Climate Solution: Cultivating the Science” hosted by TNC in 2021, as well as a series of structured
discussions that followed. Analysis and plotting were done primarily in Python (version 3.9.12)'*
using standard-library modules and a number of third-party Python packages'”'*, with some
preprocessing also done in Google Earth Engine'*® and R (version 4.0.5)".

Comparisons between global estimates of agroforestry land area, carbon stocks, and mitigation
potential

Any cited global estimates of agroforestry land area, carbon stocks, and mitigation potential were
gathered directly from publications or their supplemental materials, where available®®!1>16418% " and
were converted to common units as necessary (Mha, Pg C, and Pg C yr, respectively). In the case of
Zomer et al.' estimates, we assumed that carbon represents the same fraction of tree biomass in that
study as in their previous study'®. We estimated global agroforestry AGC stocks by summing the
Global Forest Watch AGB map* (the basis for the Chapman et al.'' map, developed using the
methods laid out by Zarin et al.'*) within all ‘agroforestry’ pixels, then multiplying by the IPCC-
recommended carbon:biomass ratio of 0.47 to estimate AGC.

Literature-coverage across previous meta-analyses

As part of our larger database-construction effort, we collected the underlying primary studies
covered by 21 previous synthetic reviews (all of the reviews we found that included a systematic
method for identifying primary studies)"~*, as part of a much larger search across over 25,000 papers.
We combined all of the primary studies in a single spreadsheet, annotated each primary study with all
of the meta-analyses that drew data from it, then summarized the resulting matrix to calculate the total
number of primary studies that occurred at least once, the percentage and number of primary studies
covered by only N meta-analyses, and the maximum N for which the number of primary studies was
greater than zero, and plotting the result (Fig. S1).

Comparison between AGC and SOC in situ estimates

We chose the original aboveground woody carbon (AGC) and SOC data from Cardinael et al."” as our
field carbon dataset (henceforth, ‘Cardinael data”) because it was the most rigorous and
comprehensive compilation available to us, given that the authors collected detaield information on
agroforestry practice types, carbon estimates, their geographic coordinates, and related covariates to
generate IPCC Tier 1 default emission factors.

To visualize variation in Cardinael data estimates of AGC and SOC stock changes after agroforestry
adoption, both within and between agroforestry practices, we first reclassified practices in the
Cardinael dataset to allow for comparative analysis: we folded data from shaded perennial-crop
systems (which had no SOC data) into the multistrata class, and we dropped data from parklands
(which has only 7 AGB samples and 2 SOC samples) and hedgerows (which report carbon stocks per
kilometer hedgerow length, rather than per hectare). (See Cardinael et al."” Table 1 for full-detail
definitions of agroforestry system types.) We then produced a series of horizontal, split violin plots,
colored by agroforestry practice (Fig. 2). Each violin depicts a kernel density estimate (KDE) of AGC
stock-change estimates above its central axis (i.e., upward-facing, solid color) and of SOC stock-



change estimates below (downward-facing, transparent color). Medians of the values depicted in the
KDEs are plotted as black ticks on the central axis; medians calculated including the negative stock-
change values that are necessarily omitted from the log-transformed KDEs are depicted as red ticks
superimposed on the SOC data (as this is the only pool with negative stock-change values). The
counts of values represented by the AGC and SOC KDE:s are provided in black at the left (above and
below the x axes, respectively), and the count of omitted negative SOC stock-change values is
provided at the far left, in red.

Comparison between in situ and remotely sensed AGC estimates

To compare in situ AGC estimates (displayed in Figure 2) to remotely sensed estimates, we used
Google Earth Engine (GEE'®) to extract remotely-sensed woody carbon density estimates at the
geographic coordinates of each in situ. We extracted these values from two maps of aboveground
woody biomass: 1.) the Chapman et al.'' map of aboveground woody biomass in global agricultural
lands ca. 2000 (but with pixels set to zero where forest loss occurred between 2000 and 2014
according to Hansen et al."”’; henceforth, the ‘Chapman map’); and 2.) the precursor to the Chapman
map, a global woody biomass ca. 2000 that is not masked to only agricultural lands (based on a global
extension of the Zarin et al."* algorithm and available through Global Forest Watch'®; henceforth, the
‘Zarin map’). We chose these two datasets because comparison between them would allow us to
elucidate potential underestimation in current global estimates of agroforestry mitigation potential.
This is because: a.) the Chapman map is generally considered our best current understanding of global
variation in agricultural woody biomass (and hence, by proxy, global variation in agroforestry), and
estimates derived from this map® factor into current IPCC estimates for global agroforestry mitigation
potential®; yet, b.) the Chapman map is derived from a subset of the full biomass data and is masked
to only pixels covered by global maps of either cropland or pastureland, then masked again to only
pixels with <25% tree cover (i.e., ‘forest’ pixels), using Landsat-derived tree-cover data'”’. Because of
this relationship, the Chapman map is expected to miss closed-canopy agroforestry systems with
characteristically high biomass (e.g., multistrata systems), and thus to underestimate global
agroforestry mitigation potential.

Before extracting map values, we first combined the crop and pasture Chapman layers per the
Chapman methods'': we resampled the coarser-resolution pastureland dataset to the nominally 30-
meter resolution of the cropland dataset, kept the more-refined cropland values wherever they were
available, kept pasture land values elsewhere, and masked out all pixels having no value for either
layer. We then converted each biomass map from its native units (Mg biomass ha™) to the common
carbon units of the Cardinael data (Mg C ha™) by multiplying by 0.47 (as above), before finally
extracting values at Cardinael in situ estimates.

We plotted published estimates against remotely sensed estimates (Fig. S3). We included only points
that fell within unmasked values for at least one of the two map datasets (Chapman or Zarin; some
points did not intersect with either dataset and thus are not included). We also styled the points to
differentiate between those that intersect both the Chapman and Zarin maps (circles) and those that
are missed by the Chapman map (stars), then used that same styling to differentiate between: the mean
in situ and remotely-sensed values for the points intersecting both the Zarin and Chapman maps
(larger, black, hollow circle); and the mean values for all points, including those that only intersect the
Zarin map (larger, black, hollow star). The discrepancies along the axes give an indication of the
underestimation likely embedded in Chapman-based estimates of mitigation potential used by Roe et
al.? and by IPCC™*. To visualize exact-zero values (which occur in remote sensing data but not in in
situ data), we plotted them within the shaded gray region at the bottom of the plot, along an artificial
zero line superimposed onto the log-transformed axes and represented by the tick label ‘ &°, below
the y-axis broken stick.

To explore the potential drivers of divergence between published and remote-sensing estimates — and
thus the potential for refinement of agroforestry carbon estimates using AGB remote sensing data at



moderate (i.e., Landsat) resolution — we collected ancillary data on a pair of potential predictors of
this discrepancy, then summarized them statistically. (Note that we consider the published estimates
as the ‘targets’ of the remote sensing estimates because, despite measurement error, they are likely to
be much closer to the true values, given that they are detailed, continuous-valued, plot-based field
measurements.) We then calculated divergence as the difference between a published measurement
and its remotely sensed estimate (such that a negative divergence indicates overestimation by remote
sensing data and a positive divergence indicates underestimation).

One potential explanatory factor of divergence is the difference in measurement years between
remote-sensing data (ca. 2000) and published data (variable). We reviewed each primary study
associated with the Cardinael data and noted the year of data collection associated with each
measurement, either as directly reported in the primary study (when available) or else however the
year could be best estimated from description of field efforts within the primary study (with the year
prior to publication serving as the best available estimate when no more refined information was
available). We then calculated time discrepancy as the difference between the published measurement
year and the remote sensing measurement year (i.e., 2000), such that negative time discrepancies
indicate measurements collected prior to 2000 and vice versa. We ran and plotted (Fig. S4) the simple
linear regression (SLR) model divergencemeas ~ o + B: discrepancy:me + €, then used the t-test
associated with coefficient f3; to test the null hypothesis that variation in divergence is uncorrelated
with variation in time discrepancy (versus our alternative hypothesis that there is a positive, linear
relationship between the two, given that sites with published estimates predating remote sensing
estimate would usually be overestimated by remote sensing, and vice versa, excepting the potential
for vegetation-clearing events that occur between the collection dates of published and remotely
sensed data).

Another potential explanatory factor is the level of precision of the geographic coordinates associated
with the published measurements summarized by Cardinael et al. For each published measurement,
we quantified coordinate precision by calculating the mean number of decimal points prior to either a
repeating digit or the final digit in the reported latitude and longitude values of the measurement’s
geographic coordinates. We ran and plotted (Fig. S5) the simple linear regression (SLR) model
divergencemes ~ Bo + P1 |precisiongac.| + €, then used the t-test associated with coefficient f3; to test the
null hypothesis that variation in divergence is uncorrelated with variation in spatial precision (versus
our alternative hypothesis that there is a negative fitted relationship between the two, given that we
expected to see a cone of heteroskedasticity narrowing to the right as divergence drops toward zero
with increasing coordinate precision).

Comparison of known agroforestry study locations and global agroforestry maps

To compare the distribution of known agroforestry locations to global maps estimating agroforestry
locations, we collected geographic coordinates of known agroforestry study sites, then plotted those
coordinates on top of raster maps from two distinct mapping efforts (in a global equal-area projection;
World Eckert IV; EPSG:54012). To help interpret both map overlays, we calculated both maps’
latitudinal rolling averages of agroforestry site coverage (defined as the fraction of agroforestry sites
that fall within a map’s non-masked pixels), then showed the results as a vertical line plot to the right
of each map, including a solid, bold line for the paired map at left and a dotted, faint line for the
comparator map. We extracted point coordinates of agroforestry study sites documented in the
scientific literature, as part of our wider database-construction effort. These points (N=992) come
from a total of 528 studies, including those covered by previous agroforestry carbon-sequestration
meta-analyses and additional relevant studies we have already processed, providing as comprehensive
and unbiased a representation of the spatial distribution of known agroforestry study sites as we are
currently capable. When locations were reported with identifiable place names but without
coordinates, we made reasonable best effort to digitize the locations using visual inspection on Google
Maps or Google Earth. For coordinates reported as bounding boxes rather than points, we plotted the
box centroids.



The raster data used (Figure 3) is a map of agricultural woody biomass from Chapman et al."). To
produce this figure, we color-mapped the Chapman map so as to distinguish between pixels < 5 Mg C
ha™ (i.e., ‘non-agroforestry’) and pixels > 5 Mg C ha™ (i.e., ‘agroforestry’), per Chapman et al."
methods, and we plotted known agroforestry study sites as black circles (where they overlap with
Chapman map) and red circles (where they do not overlap). To reduce the RAM required for
visualization, we aggregated the Chapman to approximately 3 km resolution on GEE before exporting
it as a GeoTIFF. We used this aggregated dataset, rather than the native-resolution (~30 m) Chapman
map, to visualize the overlap between the Chapman map and the known study sites, for two reasons:
1.) extraction of the native-resolution map shows that the majority of the known sites do not overlap
with the Chapman map, both because of the inherently patchy nature of the Chapman map’s input
agricultural masks and because of the known sites’ geographic imprecision being often much greater
than the 30 m nominal resolution of the Chapman map; and 2.) the sites that still do not overlap with
Chapman map, even after aggregation to approximately 3 km, provide a better indication of regions
where known sites are a considerable distance from any valid Chapman values, and thus indicate
regions where overlap is poor not only because of the intrinsic uncertainty of both datasets (which
occurs globally) but also because of any bias embedded in the Chapman map.

Depiction of spatial precision and resolution and temporal dynamics in an exemplary agroforestry
system

To demonstrate some common considerations for remote sensing-based monitoring of agroforestry,
related to spatial precision, spatial resolution, and temporal dynamics, we hand-selected a known
agroforestry study site, then plotted both contemporaneous remote-sensing imagery of the site’s
region (Figure 4a) and of the site itself across varying spatial resolutions (Figure 4b), as well as
plotting coregistered and equal-resolution imagery of the site through time, starting in 2001 and
proceeding until the present (Figure 4c). We selected our site based on the requirement that it have
high coordinate precision (and thus could be readily identified in aerial imagery) and that it have
ample, cloud-free, publicly-available imagery, taken in roughly the same time of year, for all of our
target satellite and aerial remote sensing datasets (which we determined by methodical visual
inspection). Our final site cannot be published openly, to maintain anonymity, but is a coffee
agroforestry system in Latin America.

To produce a series of concentric circles depicting the spatial uncertainty associated with coordinates
of increasing degrees of precision, we displayed the default GEE basemap imagery for our site’s
region, then overlaid on that image circles of radii corresponding to 1 decimal degree of coordinate
precision (i.e., roughly 11 km at the equator), 2 decimal degrees (i.e., roughly 1.1 km at the equator),
and 3 decimal degrees (i.e., roughly 110 m at the equator). We then estimated the coordinate precision
associated with the geographic coordinate points we were able to collect from sites reported in the
primary the literature (i.e., the point data displayed in Figure 3, but excluding sites that were
originally reported as bounding boxes rather than points, as well as sites that we manually digitized
from place names reported without point coordinates) and calculated the percentage of those
measurements > each of the three levels of precision displayed in Figure 4a. To estimate precision, we
used the same method described in the section ‘Comparison of in situ and remotely sensed AGC
estimates’, above.

To compare spatial resolutions between remote sensing imagery (Figure 4b), we first loaded three
public datasets of increasing resolutions into GEE from the GEE data catalog (30 m: Landsat 8
Collection 2 Tier 1 top-of-atmosphere reflectance data; 10 m: Sentinel-2 MultiSpectral Instrument
Level-2A reflectance data; and 5m: the Planet Tropical Americas basemaps, produced under the
NICFI program and made available by Planet’s GEE integration functionality). Given that we relied
on Google Earth (GE) to explore the temporal record of high-resolution aerial imagery (©
CNES/Airbus, Maxar Technologies) at our chosen site (see next paragraph), we then filtered our
loaded satellite datasets to the most recent GE-displayed year that overlaps with all of the available
satellite archives (i.e., to 2021). Next, we sorted the resulting annual series of Landsat and Sentinel



images by increasing cloud-cover, then used the dates of the top (i.e., highest-quality) images to
choose a three-month period of the year within which to compare images across spatial resolution
(and across time; next paragraph). Finally, we plotted each of a set of 4 images (Landsat, Sentinel,
Planet, and CNES/Airbus), using cloud-free imagery that was as close in date as possible, and
manually scaling reflectance values to visually match color palettes as closely as possible. For each
plotted image, we captured a high-resolution screenshot (using the default screenshot tool provided by
Linux Pop!_OS 21.10) of an identical rectangular area, framed using polygons plotted onto the maps
in GEE.

To produce a time series of same-season imagery for our site (for Figure 4c), we used GE to frame the
same rectangular area as in Fig. 4b. We then perused the record of high-resolution (i.e., sub-meter)
aerial imagery (© CNES/Airbus, Maxar Technologies) to screenshot coregistered, maximally-zoomed
imagery of our site for any cloud-free images available within our chosen three-month period of any
year. For demonstrative purposes, we placed those images in 2d space (time, tree cover), then
superimposed the approximate trajectory of tree cover observed at the site over time.

Comparison of current and potential agricultural woody C, by NDC ambition, continent, and country

To compare current and potential agricultural woody carbon density by continent, we combined ca.
2000 estimates from Chapman et al.' (using tabular, country-level estimates extracted from their
supplemental information) with cost-effective mitigation potential estimates from Roe et al.® (country-
level estimates extracted from supplemental information). We converted Chapman map data from Mg
biomass ha™ to Mg C ha™ by multiplying by 0.47 (as above), then calculated a single, mean-density
value as the average of cropland and pastureland densities, weighted by the relative national land
areas of each. We merged the two resulting tabular datasets, then merged onto them a tabular dataset
of agroforestry ambitions expressed in NDCs. We produced this NDC dataset using the data from
Rosenstock et al.', which indicates whether or not each non-Annex I country mentions (either
explicitly or implicitly; see Rosenstock et al. methods for details) agroforestry activities within their
Paris Agreement NDC, then supplementing that with similar but less-detailed [TUCN NDC data'"
gathered by Chapman et al." for Annex I countries. Finally, we merged that table onto a country-
boundaries dataset, then assigned countries to continents for stratified analysis. We used the resulting
dataset to create a continent-colored, paired box-and-whisker plot of the resulting dataset, plotting
both current density (solid colors) and potential density (transparent colors), both for countries that do
not mention agroforestry in their NDCs (gray vertical sections of the plot) and those that do (white
vertical sections) (Fig. 5a; plots depict a median center line, 1st- and 3rd-quartile box limits, whiskers
extending to 1.5x the inter-quartile range, and outliers plotted outside them). To determine whether
current and/or potential agricultural woody carbon densities differ significantly between countries
with expressed agroforestry NDC ambitions and those without, we ran an independent, two-sided
Welch’s t-test (to account for unequal variances) of the current, area-weighted average agricultural
woody carbon densities of countries in those two categories (nnpc = 81 Nuon-nnc = 81), as well as an
identically structured t-test of the cost-effective, potential densities modeled by Roe et al. ? (nxpc = 80,
Nponnpe = 77).

To depict that data by country, in comparison to an indicator of economic development, we first
downloaded Human Development Index (HDI) data from the UNDP (using year-2000 data'?, to
match the year for which current woody carbon densities are estimated) and merged that onto the
tabular dataset explained above. We then produced a scatterplot comparing year-2000 average
agricultural woody carbon density (In-transformed) to year-2000 HDI (Fig. 5b). We colored each
country’s point by continent (as in Fig. 5a), styled it to indicate whether it mentions agroforestry in its
NDC (circles) or not (X’s), and sized it according to cumulative, cost-effective agroforestry mitigation
potential by year 2050 (as estimated by Roe et al.®), labeling countries in the 95th percentile of
cumulative potential. Finally, we used SLR to estimate and plot (within the 95-percent confidence
interval) the model In(woody_Cau) ~ Bo + 81 HDIx0 + €, then reported the R2 and p-value.



Estimation of percent of REDD+ projects using agroforestry

To estimate the percent of REDD+ projects that incorporate agroforestry, we first downloaded the full
version 4.2 dataset from the “International Database on REDD+ projects and programs: Linking
Economics, Carbon and Community” (ID-RECCO)"”. We then calculated the percent of projects
listing ‘agroforestry’ among their activity details (i.e., the percent of rows in sheet ‘1. Projects’ with
the term ‘agroforestry’ included in the contents of the column ‘Details for Afforestation/Reforestation
activity’).
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Figure S1: Coverage of primary studies in agroforestry carbon syntheses. Plot shows the number
of primary studies having each of the values of ‘coverage’ (i.e., number of syntheses in which the
primary study’s data was used), up to the highest observed coverage of 8 (out of a maximum potential
coverage of 21).
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Figure S2: Conceptual organization of global trees. A diagram representing all of the world’s trees
(outer, dark gray circle), divided between trees outside forest (TOF; dark brown half circle) and trees
within forest (dark green half circle) ), and simultaneously divided between non-agroforestry trees
(bright-colored segments) and agroforestry trees (pale-colored segments, within the inner, light gray
circle). (Diagram segments are arbitrarily scaled.) Remote sensing and MRV methodologies often rely
on the classification of pixels into forest and non-forest categories, such that agroforestry systems can
be considered as consisting of TOF (i.e., open-canopy systems) or forest trees (i.e., trees in closed-
canopy systems). Comprehensive carbon accounting frameworks for the agriculture, forestry, and
other land use (AFOLU) sector may be able to leverage emergent, tree-based (rather than pixel-based)
remote sensing methodologies to circumvent this complication.
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Figure S3: Comparison between field-measured and remotely sensed agroforestry aboveground
carbon (AGC) stocks. There is little apparent correspondence between AGC stocks measured at field
sites described in the primary literature (N=273) and AGC estimates derived from the highest-
resolution global remote sensing product available. The x-axis shows the same, log-transformed
AGC data as that displayed in Figure 2, and the y-axis shows log,-transformed values extracted from
the unmasked 30-meter global biomass map available from Global Forest Watch'®> — the precursor to
the Chapman et al."" agroforestry map, prior to exclusion of non-agricultural pixels and high-tree-
cover pixels. The expected 1:1 line is also shown. Point style indicates whether a site falls within a
pixel included in the final Chapman map (circles) or not (stars). We also show the means of only
Chapman-covered sites (large black circle) and for all sites (large black star), highlighting that sites
not included in the Chapman map lead to lower mean mitigation potential estimates in both field-
measured and remotely sensed data (red annotation ‘A’); the downward bias in remote sensing data
propagates through peer-reviewed publications® and IPCC reports® derived from the Chapman map.
Sites in the gray-shaded region below the y-axis broken stick have zero remotely-sensed AGC, yet
vary widely in their field-measured estimates (red annotation ‘B’). We also note that the discrepancy
between field-measured and remotely sensed agroforestry AGC is largely insensitive to temporal
misalignment (Fig. S4) and entirely unrelated to the spatial precision of published field coordinates
(Fig. S5). These challenges reinforce the known limitations of moderate-resolution data for
agroforestry mapping and carbon estimation.
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Figure S4: Discrepancy between published and remote sensing carbon stock estimates is
partially attributable to discrepancy in data-collection years. The difference between published
and remotely-sensed estimates increases as a function of the difference between their collection years
(R*=0.112). The slope of the relationship is positive and significant (slope=2.837 Mg C ha™ yr'; p =
1.29x107). This suggests some room, albeit quite limited, for improvement in AF carbon stock
measurement using moderate-resolution remote sensing data. Only 13.18% of measurements have the
same year as the remote sensing dataset (year 2000), 48.45% differ by up to 5 years, 22.87% differ by
between 5 and 10 years, and 15.50% differ by more than 10 years. Sites are colored by AF practice, as
in Fig. 2.
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Figure S5: Discrepancy between published and remote sensing carbon stock estimates is not
related to spatial precision of published geographic coordinates. The difference between
published and remotely-sensed estimates has no significant linear relationship with the spatial
precision of the decimal-degree geographic coordinates reported in AF field studies (R* = 0.0093).
The slope of the relationship is indistinguishable from 0 (slope=-1.911 Mg C ha™ degree™; p = 0.14).
If increasing imprecision improved the ability of moderate-resolution remote sensing imagery to
estimate AF aboveground carbon stocks then the scatterplot would be expected to be heteroskedastic
(with greater variance at left) and to exhibit a significant negative slope. Sites are colored by AF
practice, as in Fig. 2
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SUPPLEMENTARY TABLES

Table S1: Potential predictors of variation in agroforestry carbon stocks and fluxes that have been
mentioned in previous studies, other than the commonly used categorical variable of agroforestry
practice type (e.g.’ 17,18,25,35,36,138)

Potential predictor References

Previous land use Demessie et al. 2014, Lorenz et al. 2014'*°, van Straaten et al.
2015, Chatterjee et al. 2018%, De Stefano and Jacobson 2018*¢

Age of system Fassbender 1998, Oelbermann et al. 2004**?, Demessie et al.
2014, Lorenz et al. 2014*° Chatterjee et al. 2018%, Ma et al.
2020%, Corbeels et al. 2019

Soil management practices Hulugalle et al. 1990, Fassbender 1998, Albrecht et al.

(e.g., tillage, application of plant | 2003*, Soto-Pino et al. 2009, Winans et al.. 2014'*®, Dhyani

residue) et al.. 2016, Shrestha et al. 2018*

Soil class Demessie et al. 2014**°, Mufioz-Rojas et al. 2015, Hubner et
al. 202#

Soil fertility Amézquita et al. 20098

Initial SOC Minasny et al. 2017*°, Corbeels et al. 2019*

Clay content Demessie et al. 2014**°, Lorenz et al. 2014*°, Hiuibner et al.
2021%

Altitude Amézquita et al. 2009*%, Nath et al. 20213

Climate Lorenz et al. 2014**°, Cardinael et al. 2018%, Ma et al. 2020%,
Ahirwal et al. 2021%¢, Hubner et al. 2021, Nath et al. 2021%

Topography Amézquita et al. 20098, Demessie et al. 2014

Mean annual temperature Amézquita et al. 2009, Dhyani et al.. 2016, Ahirwal et al.

2021%, Hibner et al. 2021%

Mean annual precipitation Dhyani et al.. 2016°, Ahirwal et al. 2021, Hibner et al. 2021*

Vegetation management (e.g., | Romero et al. 1991%*°, Oelbermann et al. 2004**
pruning frequency)

Tree density Somarriba et al. 2008, Demessie et al. 2014'%*

Tree species Albrecht et al. 2003*, Oelbermann et al. 2004**?, Somarriba et
al. 2008, Demessie et al. 2014, Wotherspoon et al. 20142,
Dhyani et al. 2016

Tree functional type (e.g., Demessie et al. 2014**°, Lorenz et al. 2014'*°, Mayer et al. 2022%
coniferous, broadleaf; N-fixing)

Tree diversity Demessie et al. 2014**°, Lorenz et al. 2014**°, Islam et al.
20152, Lovell et al. 2018%*, Ma et al. 2020%°
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