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Priority science can accelerate agroforestry 
as a natural climate solution

Drew E. Terasaki Hart    1  , Samantha Yeo    1, Maya Almaraz    1,2, 
Damien Beillouin    3,4, Rémi Cardinael    5,6,7, Edenise Garcia    8, Sonja Kay    9, 
Sarah Taylor Lovell10,11, Todd S. Rosenstock    12, Starry Sprenkle-Hyppolite13, 
Fred Stolle    14, Marta Suber    15, Bhuwan Thapa10, Stephen Wood    1,16 & 
Susan C. Cook-Patton    1

The expansion of agroforestry could provide substantial climate change 
mitigation (up to 0.31 Pg C yr−1), comparable to other prominent natural 
climate solutions such as reforestation. Yet, climate-focused agroforestry 
efforts grapple with ambiguity about which agroforestry actions provide 
mitigation, uncertainty about the magnitude of that mitigation and inability 
to reliably track progress. In this Perspective, we define agroforestry as a 
natural climate solution, discuss current understanding of the controls 
on farm-scale mitigation potential and highlight recent innovation on 
emergent, high-resolution remote sensing methods to enable detection, 
measurement and monitoring. We also assess the status of agroforestry 
in the context of global climate ambitions, highlighting regions of 
underappreciated expansion opportunity and identifying priorities for 
policy and praxis.

Agroforestry — the incorporation and maintenance of trees in agri-
cultural landscapes — is a broad term encompassing a diversity of  
Indigenous, traditional and modern farming practices1–4. These can 
range from scattered trees in pastures or farmscapes, to linear trees in 
or around fields, to forest canopies grown above crops. Agroforestry’s 
overarching strength is its multifunctionality: adding trees to agricul-
tural lands can provide a variety of agronomic, socioeconomic and 
environmental benefits5–7. From a climate change perspective, one key 
benefit is the potential for agroforestry to increase or protect carbon 
storage on agricultural lands. This makes agroforestry a potential natu-
ral climate solution (NCS) — a land-use practice that sequesters carbon 
or reduces emissions without reducing food and fibre production or 
eroding biodiversity8.

Global estimates of the cost-effective mitigation potential of agro-
forestry range from 0.12 Pg C yr−1 (Griscom et al.8; 95% confidence inter-
val, 0.05 to 0.21 Pg C yr−1) to 0.31 Pg C yr−1 (Roe et al.9; uncertainty not 
estimated), making it the largest agricultural NCS opportunity, com-
parable to other prominent NCSs such as reforestation (0.27 Pg C yr−1) 
and reduced deforestation (0.49 Pg C yr−1)9. Many nations intend to 
use agroforestry to reduce their net greenhouse gas emissions, with 
40% of non-Annex I nations including agroforestry in their nation-
ally determined contributions (NDCs) under the Paris Agreement10. 
Moreover, global agricultural lands already contain substantial woody 
carbon — though point estimates range widely, from 6.93 Pg C (above-
ground carbon11) to 15.77 Pg C (aboveground12–14) to 37.12 Pg C (above 
and belowground15,16) (Supplementary Methods). This carbon may be 
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Similarly, if a farmer maintains some percentage of tree cover that 
would otherwise have been entirely removed, this act of protection 
provides mitigation from avoided emissions (Fig. 1, ‘Risk of removal’). 
Baseline setting thus helps ensure that climate-focused agroforestry 
efforts provide mitigation — though the questions of who sets a base-
line, how, and when remain open and important ones, with potential 
equity implications49.

Finally, agroforestry definitions often focus on intermixing trees 
with crops and/or animals, thus excluding tree-only practices that can 
provide carbon storage within agricultural landscapes. For example, 
some diversified farming systems may be excluded from agrofor-
estry definitions because trees and crops occur as discrete patches 
within mosaics (for example, satoyama landscapes50 and parcelized 
cut-and-carry systems51) rather than as fully intermixed production 
systems. Agricultural tree monocrops, such as orchards without crops 
or animals, are even more likely to be excluded from common agrofor-
estry definitions. Yet the adoption, expansion or retention of these 
systems may increase net carbon storage on agricultural land52. Thus, 
although these systems are sporadically defined as agroforestry53, we 
include them within our definition of AF-NCS.

Given the above, we define AF-NCS as ‘the intentional establish-
ment, increase or maintenance of trees in agricultural landscapes, 
providing additional net carbon storage against a business-as-usual 
baseline, without causing net reduction of current food and fibre 
production or negative impacts on biodiversity’. This definition refines 
standard agroforestry definitions to circumscribe the agroforestry 
practices that are likely to provide climate change mitigation, and it 
integrates the NCS definition8 to preclude negative food security and 
biodiversity outcomes (for example, the replacement of diverse native 
grasslands with agroforestry). It provides a first-order approximation 
of the climate impacts of agroforestry interventions, but accurate, 
site-specific estimates will require careful assessment of net carbon 
dynamics, non-carbon climate forcing and other accounting challenges 
(discussed in the following section).

Estimating the mitigation potential of 
agroforestry
In the past decade alone, there have been more than 20 synthetic stud-
ies quantifying agroforestry carbon stocks and fluxes17–37. These efforts 
have primarily focused on carbon in aboveground and belowground 
woody biomass (AGB and BGB) and on soil organic carbon (SOC), and 
they consistently demonstrate substantial mitigation potential. How-
ever, carbon estimates vary widely across these studies, indicating a 
knowledge gap about the controls on farm-scale carbon sequestration 
and storage. This makes it challenging to accurately estimate mitiga-
tion potential at existing AF-NCS sites (because direct measurement 
is often cost-prohibitive) and at potential sites under consideration.

Some of this variability stems from methodological disparity. 
These studies vary in geographic focus and extent, quantitative 
methods, and data quality and criteria for inclusion. Perhaps most 
importantly, and typical of meta-analyses on similar topics6, they 
feature limited sample sizes drawn from disjoint subsets of the total  
available literature: across the 21 prior analyses we reviewed, 66% of 
the 536 primary studies used appear only once, and just three primary  
studies54–56 appear in 8 of the 21, the maximum number of repeat cita-
tions (Supplementary Fig. 1). With existing reviews basing their conclu-
sions on small portions of the available data, understanding of AF-NCS 
mitigation potential remains limited.

Syntheses can also omit factors that could be key drivers of vari-
ation in agroforestry carbon storage, including bioclimate, species 
choice, planting density and management regime (Supplementary 
Table 1). Instead, previous syntheses usually stratify mitigation esti-
mates by agroforestry practice, sometimes with coarse subdivision by 
a second covariate (for example, climate17). This is sensible, given the 
need to organize the vast diversity of treed agricultural systems into a 

concentrated on a small fraction of global land (<10% of agricultural 
lands are estimated at >5 Mg C ha−1 of woody biomass11), suggesting 
substantial opportunity to both conserve and expand trees within 
agricultural lands.

Global synopses are useful, but they are highly variable, are based 
on coarse assumptions, and thus cannot provide the mitigation esti-
mates needed to inform specific land management practices. Many 
studies have synthesized farm-scale estimates for that purpose17–37, 
arriving at broad agreement that agroforestry adoption can increase 
carbon storage7, yet providing little clarity about how much. These 
uncertain estimates of mitigation potential, paired with the poor ability 
to predict changes in crop yield, revenue, ecosystem services, and other 
co-benefits and trade-offs of agroforestry, limit farmers’ and ranchers’ 
ability to make informed management decisions. Finally, the lack of 
robust, standard methodologies for monitoring, measurement, report-
ing and verification (MRV) limits farmers’ access to climate-focused 
incentive mechanisms such as carbon markets or government funding.

Agroforestry has clear and viable NCS potential38, but large uncer-
tainties, knowledge gaps and technical hurdles remain, hindering 
deployment and expansion. In the couple of decades since pathbreak-
ing reviews of agroforestry carbon sequestration28,39–43, substantial 
advances have been made in scientific understanding, data availability, 
technical capacity and climate ambition. Here we take stock of these 
changes to help prioritize research and inform action during this deci-
sive decade for constraining climate change. We review the state of 
our knowledge about agroforestry as an NCS (henceforth, AF-NCS) 
to answer four key questions: (1) What is AF-NCS? (2) How well do we 
understand its mitigation potential, and how can that be improved? (3) 
How can agroforestry locations and practices be mapped, and how can 
its extent and carbon density be monitored? (4) What other information 
and incentives will best support agroforestry adoption and expansion?

Defining agroforestry as a natural climate 
solution
Agroforestry is a land use, typically defined on the basis of manage-
ment practices, species composition or other agro-ecological char-
acteristics44. By contrast, an NCS is a land-use change, defined by the 
ability to mitigate climate change without decreasing food security 
or biodiversity. Not all land-use changes that result in agroforestry 
provide climate change mitigation — indeed, some agroforestry transi-
tions can even increase atmospheric greenhouse gas concentrations  
(Fig. 1). Yet this is often overlooked, because the lack of an explicit 
definition of AF-NCS incorrectly implies that all agroforestry practices 
are NCSs. Here, by applying three refinements to common agroforestry 
definitions, we circumscribe the subset of agroforestry transitions 
that qualify as AF-NCS.

First, existing agroforestry definitions describe systems combin-
ing woody species (that is, shrubs or trees; hereafter ‘trees’), non-woody 
crops or forage (hereafter ‘crops’), and/or livestock. This definition 
does not consider whether trees are intentionally managed, but inten-
tionality is critical for determining whether management decisions 
provide credible climate change mitigation. If an intentional NCS 
effort leads to tree incorporation or maintenance that would not have 
occurred under business-as-usual conditions, then it satisfies the 
principle of additionality and thus provides real mitigation. Though 
additionality can be challenging and costly to demonstrate45, it is essen-
tial for ensuring the effectiveness of an NCS policy or intervention.

Second, existing agroforestry definitions often describe cur-
rent practices without reference to prior land use, but not all agro-
forestry transitions benefit the climate46. For example, thinning or 
clearing of forest to establish agroforestry generally causes carbon 
losses17,47, whereas establishing or enhancing tree cover on open 
farmland generally stores carbon48 (Fig. 1, ‘Adoption’ and ‘Change in 
management’). This means that two agroforestry systems could look 
similar, but their establishment could cause opposite climate forcing.  
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tractable typology. But because these typologies reflect management, 
not carbon dynamics, they explain a limited amount of site-to-site vari-
ation in mitigation potential. For example, ‘silvopasture’ (that is, trees 
on grazing lands) could describe systems ranging from occasional, 
scattered trees in pastures to livestock grazing under a closed canopy —  
systems that vary widely in aboveground carbon density.

As a result, estimates of carbon storage potential in prior studies 
have high uncertainty. For example, the carbon stock change data com-
piled by Cardinael et al.17 to develop IPCC Tier 1 emission factors exhibit 
more variation within than between practices, with nearly 100-fold 
variation in silvopasture (Fig. 2 and Supplementary Methods). However, 
some coherent patterns appear when comparing how aboveground 
woody carbon (AGC) and SOC stocks change across practices (Fig. 2). 
The increase in AGC is greatest in multistrata systems (which can have 
dense and complex canopies) but is more variable in silvopasture (with 
its broad structural diversity) and is lower in the systems typified by 
scattered trees. Patterns in SOC are less clear, but SOC appears lower 
on average in systems that are more likely to be regularly disturbed by 
ploughing (that is, intercropping and silvoarable). Nonetheless, the 
large overlap of estimates between agroforestry types demonstrates 
how coarse categorical analysis and limited sample sizes can limit the 
utility of mitigation potential estimates.

Process-based simulation models provide an alternative approach 
to understanding agroforestry carbon dynamics57, allowing for tem-
porally and/or spatially explicit accounting of various carbon pools. 
However, these models may have limited utility for estimating AF-NCS 
mitigation potential because their structural and parametric complex-
ity can restrict them to certain regions (for example, COMET-Farm58) 
or crops (for example, DynACof59) or require costly parameterization 

(for example, CO2FIX60). However, such models can be valuable when 
they match the system type, geographic context and accounting needs 
of a particular AF-NCS action.

As a path towards a generalized and comprehensive understand-
ing of agroforestry mitigation potential, we propose a data-driven 
approach: a statistical model based on a database of all previously 
published, field-derived estimates of carbon stocks and fluxes, com-
bined with all available information on the potential controls on that 
variation. The results would support everything from private project 
development to national emissions reporting and could even find 
added value from harmonization with complementary datasets (for 
example, any national forest inventories containing agroforestry sites). 
Calls for such a database have long been made10,17,61. We are therefore 
developing this database as a publicly available resource representing 
an exhaustive, multilingual sample of the white and grey literatures.

While this effort will help elucidate some of the principal controls 
on carbon storage in agroforestry systems, further progress could 
come from improvements in the content, quality and geographic 
coverage of newly reported data41,62. One key improvement would be 
standardized reporting of plot-level and site-level variables that are 
possible predictors of carbon storage (see Supplementary Table 1 for 
potential candidates). For example, bioclimate controls AGB in both 
natural forests63 and agroforests17,24, but imprecise geocoordinates in 
primary studies hinder climatic characterization of sites. Management 
variables (including pruning regimes, tillage depth and frequency, 
and rotation cycle lengths) are likely to influence carbon storage, so 
they could also be reported in a standardized and detailed way42,64. 
Other potentially important but often unreported variables include 
tree age distribution and species65. Ultimately, detailed descriptions 

No existing agroforestry Existing agroforestry

Change in managementAdoption Risk of removal

Baseline established

NCS NCS NCS NCS NCS NCS

Trees established 
on agricultural or

degraded land

Tree biomass decreased in
static agroforestry system

or

Tree cover decreased in 
rotational agroforestry

system

Trees removed from 
forest or woodland

or

Trees established on 
non-forest native habitat
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static agroforestry system
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rotational agroforestry

system
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agroforestry system
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Fig. 1 | Land-use change and carbon outcomes determine whether 
agroforestry is an NCS. If agroforestry does not exist before the baseline, then 
agroforestry adoption serves as an NCS when it increases woody and soil carbon 
storage without impacting biodiversity (left). If agroforestry exists at the time 
of baseline establishment, changing agroforestry management can serve as an 

NCS if it increases tree biomass or proportional tree cover in static or rotational 
agroforestry systems, thus increasing carbon storage (middle). Alternatively, 
conservation of some or all trees can serve as an NCS if those trees would have 
been removed under business-as-usual conditions, such that their maintenance 
leads to avoided emissions (right). Figure adapted from image by Vin Reed.
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of the agroforestry systems in each carbon-reporting primary study 
would provide maximum information for statistical modelling and 
thus accelerate the systematic determination of the key controls on 
mitigation potential.

Methods for agroforestry carbon measurements could also be 
improved. For AGB, this could come from the use of agroforestry- 
specific and species-specific allometric equations, given that accurate 
but costly and destructive whole-tree sampling is rarely employed41. 
Allometric equations derived from forest trees can introduce bias when 
the same equations are applied to open-grown agroforestry trees66,67. 
Likewise, direct measurement of BGB is expensive and difficult, so 
BGB is typically estimated using root–shoot ratios instead, which are 
also often based on forest-grown and/or unmanaged trees68. However, 
previous work has demonstrated that root–shoot ratios in agricultural 
systems can be influenced by increased light availability69 or by inten-
sive agricultural management70 and that rooting depth and distribu-
tion can be altered by crop competition71, suggesting that further 
research is needed to understand how well default root–shoot ratios 
reflect BGB dynamics in agroforestry. Finally, while many AGB and BGB 
assessments will continue to rely on field-collected tree measurements, 
terrestrial, drone-based, aerial and even satellite-based remote sens-
ing methods are becoming increasingly accurate and accessible72–74.

A variety of improvements could also be made to SOC measure-
ments. Although agroforestry studies often quantify SOC, many fail to 
provide a reference measurement (that is, either before agroforestry 

adoption or at an adjacent non-agroforestry plot with the same 
land-use history). Studies that do provide a reference measurement 
(for example, Cardinael et al.17) show that SOC generally increases, 
though not always (Fig. 2), highlighting the critical importance of a 
reference against which to determine the direction and magnitude of 
change. Increased measurement of fine-scale spatial heterogeneity 
in SOC will also enable more accurate plot-level estimates, given the 
variation sometimes observed on small scales (for example, between 
rows and alleys in intercropping systems54,75). Additional improvements 
could come from measuring deeper into the soil profile than is typical 
(that is, >100 cm; for example, Cardinael et al.76), partitioning SOC into 
particulate and mineral-associated sub-pools to better understand 
residence times41,54, and using an equivalent soil mass approach in lieu 
of a fixed-depth approach, to better account for the effect of land use 
on soil bulk density77.

A full assessment of the mitigation potential of agroforestry may 
also require accounting for additional factors that are infrequently 
considered but potentially important. These include litter, coarse 
woody debris, and other dead-matter pools; CH4 and N2O fluxes19,78; 
and socio-ecological feedbacks (for example, fuel-wood use79). 
Non-greenhouse-gas dynamics, such as land-use-change-induced 
biogeophysical forcing resulting from changes in albedo, evapotranspi-
ration or cloud dynamics, are also poorly understood but may influence 
net mitigation potential, especially in semi-arid and boreal regions80,81.

Durability, or permanence, is another critical consideration, given 
that many agroforestry trees will not persist for the century-scale time 
frames targeted by many forest MRV protocols but instead may turn 
over on time frames closer to those laid out in newer SOC MRV proto-
cols82. Estimates of durability are poorly constrained and sometimes 
biased, even for forest trees83, and are only further complicated by 
non-stationary disturbance regimes under climate change84. Agro-
forestry trees, protected as an economic investment, could be less 
vulnerable to natural disturbance than unmanaged trees85, but they 
could also have lower temporal durability because of wood extraction, 
declines in production or land-use change.

Finally, leakage is critical to NCS accounting. Leakage dynamics 
could reduce the mitigation of agroforestry, if agroforestry reduces 
crop yield and thus leads to additional land clearing. However, reverse 
leakage could increase agroforestry mitigation, if increased local 
fuel-wood production decreases fuel harvesting in nearby ecosys-
tems86 or if increased land-equivalent ratios improve food security 
on already-cleared land87. Leveraging synthetic-control methods to 
measure rates of deforestation in regions with and without agroforestry 
adoption, as has been done for protected areas88, could help clarify the 
landscape-level outcomes of agroforestry transitions.

Mapping and monitoring agroforestry
Knowledge of where agroforestry occurs and how much carbon it stores 
is foundational to many of the scientific needs underlying AF-NCS 
implementation efforts. These include improved estimates of mitiga-
tion potential and expansion potential, and establishment of baseline 
tree cover extents and loss rates for MRV. However, current understand-
ing of the spatial distribution of agroforestry is weak, with estimates 
of the global agroforestry extent varying fourfold, from 400 Mha  
(ref. 89) to 700 Mha (ref. 12) to 895 Mha (refs. 16,90) to 1,600 Mha  
(ref. 41). Most agroforestry mapping methods rely on remote sensing 
products, often by combining tree cover or AGB maps with agricultural 
land-cover maps11,15,16 or by attempting to detect and classify forest 
management practices12. However, the structural variety of agrofor-
estry systems, including both scattered trees outside forests and trees 
within agricultural forests (Supplementary Fig. 2), complicates map-
ping methodologies10 and can introduce bias.

For example, the data from Chapman et al.11 (hereafter the  
‘Chapman map’), despite being the most comprehensive global attempt 
to map agroforestry, excludes locations with >25% tree cover because 
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Fig. 2 | Carbon stock changes after agroforestry adoption vary within and 
across practices. Comparison of changes in AGC and SOC after agroforestry 
adoption, using data from Cardinael et al.17. Kernel density estimates (KDEs) 
show the distributions of stock changes (log10-transformed for readability) for 
AGC (upward-facing KDEs) and SOC (downward-facing KDEs) after agroforestry 
adoption. The practices are ordered from top to bottom from the lowest to the 
highest median AGC (black ticks). The sample sizes are shown in black on the 
left. Negative SOC stock-change values are omitted from the KDEs because they 
are rare and cannot be log-transformed. Instead, the number of negative values 
omitted is displayed in red on the left, and the medians including negative values 
are displayed as red ticks. The following are brief descriptions of the systems (see 
Table 1 in Cardinael et al.17 for more details): intercropping involves rows of fast-
growing woody species, usually pruned as mulch for the crop rows in between 
and usually tropical; fallow involves sequential systems, featuring both natural 
and improved fallows; silvoarable involves rows of woody timber or fuel species 
with crop rows in between, usually temperate; silvopasture involves woody 
species planted on permanent grass or grazing lands; and multistrata involves 
one or more shade-tolerant crops grown under one or more layers of canopy, 
including both shade-grown commercial crops (for example, coffee and cacao) 
and home gardens.
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of the inability to distinguish closed-canopy agroforestry (for example, 
multistrata systems) from non-agricultural forests. This methodologi-
cal choice, though inevitable, disproportionately omits data in regions 
where agroforestry tends to be closed-canopy (for example, the moist 
tropics; Fig. 3). Because closed-canopy systems tend towards higher 
AGC (Fig. 2), this leads to underestimates of carbon storage potential 
that propagate through to IPCC and peer-reviewed analyses9,38. Indeed, 
remote sensing estimates of agroforestry AGC appear 65% lower within 
the Chapman map on average (12.5 Mg C ha−1 versus 36.2 Mg C ha−1 when 
comparing Cardinael et al.17 sites that overlap with the Chapman map 
with all Cardinael sites), and field measurements are 51% lower when 
making the same site comparison (11.0 Mg C ha−1 versus 24.9 Mg C ha−1; 
Supplementary Fig. 3 and Supplementary Methods).

Agroforestry systems often feature small plot sizes with fine-scale 
heterogeneity in tree cover and thus in carbon density, limiting the util-
ity of best-available, moderate-resolution (30-metre) global datasets. 
These small plot sizes are exemplified by the fact that the low precision 
of many published study site coordinates (less than half of the studies 
we reviewed report coordinates to at least three decimal places of 
coordinate precision (~110 m; Fig. 4a) makes it difficult to confidently 
identify the corresponding agroforestry plots within aerial imagery 
(such as the Latin American coffee system in Fig. 4b). Their fine-scale 
heterogeneity (for example, Fig. 4b) results in a large discrepancy 
between field-derived and remotely sensed carbon estimates (Supple-
mentary Fig. 4) — one with limited room for improvement by increasing 
temporal (Supplementary Fig. 4) or spatial (Supplementary Fig. 5) 
alignment between field-derived and remote sensing datasets. Primar-
ily, improved mapping and MRV will probably require increased spatial 
resolution that matches or exceeds the characteristic heterogeneity of 
the systems being monitored. In some systems, effective MRV may also 
require temporal resolution sufficient to detect complex AGC dynam-
ics (for example, the two periods of biomass accumulation observed 
in Fig. 4c) or improved spectral resolution to improve discrimination 
between target agroforestry systems and other land cover.

Fortunately, the trend towards higher-resolution, machine- 
learning-based mapping promises substantial progress. One major area 

of work is in detection, which can help answer the question of where 
agroforestry occurs. This can be particularly important for regional 
or jurisdictional efforts, for which the locational information that is 
a prerequisite for MRV may not be readily available. The structural 
heterogeneity across agroforestry systems (Supplementary Fig. 2) 
poses a substantial challenge for detection and typically means that dif-
ferent methods are used to detect open-canopy versus closed-canopy 
agroforestry systems.

The detection of open-canopy agroforestry systems can utilize 
methods for mapping trees outside forests. These methods can map 
dispersed tree cover even when the canopy area of individual trees 
is smaller than the nominal pixel size of moderate-resolution data-
sets. This has revealed numerous examples of dispersed tree cover 
that was systematically overlooked in previous analysis91–93. Some 
trees-outside-forests algorithms use global, publicly available satel-
lite imagery of the highest available resolution (for example, 10-metre 
Sentinel data93–95) to estimate tree cover in non-forest landscapes. 
Others use high-resolution (for example, between 5 and 0.5 metres) 
imagery, from regional aerial campaigns or from commercial satellite 
archives, to delineate and count individual trees74,92,96. Both approaches 
have their strengths and drawbacks, and both could be useful starting 
points for developing methods to distinguish open-canopy agrofor-
estry trees from other trees outside forests (that is, to distinguish 
between the light and dark yellow segments in Supplementary Fig. 2). 
Some precedent exists for this97, but much work remains to be done.

Because there is little spectral signature distinction between 
closed-canopy agroforests and non-agricultural forests (that is, 
between the light and dark green segments in Supplementary  
Fig. 2), these two land-cover types are challenging to distinguish. Recent 
approaches thus tend to analyse higher-resolution data with sophis-
ticated methods, including time-series analysis98, analysis of non- 
optical imagery (for example, synthetic-aperture radar (SAR)99), deep 
learning100 and data fusion101. Much work is still needed to discover accu-
rate, generalized solutions101, but this is an active research area. Recent 
work demonstrating that a tree-delineation algorithm developed for 
trees outside forests92 can also delineate trees within forests74 suggests 
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Fig. 3 | Global comparison between remote sensing of agroforestry and site 
locations gathered from literature. The global distribution of woody carbon 
density in agricultural lands (grazing lands and croplands) is shown for the year 
2000. Following the methodology of ref. 11, we distinguish land with densities 
>5 Mg C ha−1 as ‘agroforestry’ and depict carbon density in those locations with 
an increasing green scale. Known agroforestry locations (n = 992) pulled from 
528 primary studies (Supplementary Methods) are overlaid as black circles for 

sites that overlap with our 3-km-aggregated Chapman dataset and as pink circles 
for the remaining sites that do not overlap. In the right panel, we display the 
percentage of known agroforestry sites covered by the map within a latitudinal 
sliding window, showing that the majority of the missed sites are clustered 
within moist tropical and subtropical regions (Supplementary Methods). Figure 
adapted with permission from ref. 11, Wiley.
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the possibility of detecting agroforestry systems across a range of  
tree densities.

Detection is only the starting point for reliable monitoring and 
measurement. Except for the minority of projects that fund field-based 
protocols, this will probably depend on remote sensing. And given 
the coarseness and uncertainty of agroforestry emission factors, 
remote-sensing-based monitoring will probably require not only 

tracking agroforestry extent over time but also estimating carbon 
stocks and their temporal changes. Efforts are already underway to 
improve methods for estimating AGB and AGC using publicly avail-
able data from space-based optical, lidar and/or SAR sensors102. These 
state-of-the-art products may have improved accuracy, enabling more 
accurate and more frequent estimation of incremental stock changes 
over time. However, their moderate resolution will probably still fail 
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Fig. 4 | Importance of spatial precision, spatial resolution and temporal 
dynamics in remote sensing of agroforestry. a, Spatial precision: regional 
aerial image of the surroundings of a Latin American coffee agroforestry system 
explored in b and c. The image is annotated with radii depicting increasing levels 
of decimal-degree precision (expressed in approximate metres at the equator) 
associated with geographic coordinates collected from 465 primary studies that 
measured agroforestry carbon (increasing from one decimal place (that is, ~11 km 
precision), in light purple; through two decimal places (that is, ~1.1 km), in purple; 
to three decimal places (that is, ~110 m), in dark purple). In the legend, we display 
the percentage of field sites reported at each of the three levels of precision. 
Without high precision, it is difficult to confidently identify study systems in 
aerial imagery or to use previously published estimates as training data for 

spatial modelling efforts. b, Spatial resolution: the coffee agroforestry system 
indicated by the grey box in a, shown in remote sensing imagery of increasing 
resolution. All images are from the same roughly one-month period (Landsat, 
10 March 2021; Sentinel, 24 February 2021; Planet, February 2021; CNES/Airbus, 
February 2021). c, Temporal dynamics: the coffee agroforestry system from b, 
shown in a multi-year time series of publicly available Maxar/CNES/Airbus aerial 
imagery, all captured during the same three months of the year. Approximate 
tree cover trajectory is visualized as a purple line. The image labelled ‘2021’ is 
identical to the 2021 image in b. If only 2001 and 2014 imagery were available, the 
time-averaged tree cover would be overestimated, whereas if only 2001 and 2015 
imagery were available, the time-averaged tree cover would be underestimated. 
Image in a adapted from Google Earth © 2023 Maxar Technologies/CNES/Airbus.

http://www.nature.com/natureclimatechange


Nature Climate Change | Volume 13 | November 2023 | 1179–1190 1185

Perspective https://doi.org/10.1038/s41558-023-01810-5

to capture the fine-scale spatial heterogeneity of some agroforestry 
systems, for the reasons discussed above. One alternative is the applica-
tion of similar methods to higher-resolution satellite, aerial or drone 
imagery103, producing pixel-based carbon stock change estimates that 
may better align with field-based values. Another is the combination of 
high-resolution tree-delineation methodologies with location-relevant 
tree allometrics, providing the novel ability to make tree-by-tree stock 
change estimates74,104,105. For SOC, the other major pool of interest, 
estimates are not only limited by coarse spatial scale and consider-
able uncertainty but are also predominantly detectable only in open 
cropland102, so progress is likely to depend on some combination of 
improvements in statistical and mechanistic modelling.

Higher resolution will doubtless play a role in improving AF-NCS 
mapping and MRV. However, efforts to use high-resolution data will 
need to navigate the analytical trade-offs that can arise — limited 
spectral and temporal resolution or spatial extent, increased data 
volume or processing time106, and complications caused by image 
variability within single tree crowns107. They will also need to handle 
the common challenges of accessibility of quality, cloud-free imagery, 
technical capacity, and affordability of data acquisition and com-
putation. Ultimately, high-resolution MRV systems may need to be 
developed and parameterized on a regional and case-by-case basis, 
especially given the potential for variability in monitoring needs and 
objectives (for example, some applications may wish to distinguish 
tree monocrops (such as orchards and woodlots) from trees inter-
cropped with food or fodder108, or to identify rotational systems using 
change detection methods109). Purpose-built workflows could ben-
efit from the ability to develop unique, strategic analyses combining 
higher spatial-resolution and/or spectral-resolution optical datasets, 
object-based tree-inventory approaches, lidar or SAR imagery, tex-
ture metrics, and/or phenology99,101, but such analyses would require 
substantial technical investment. Meanwhile, for regions where such 
investment remains cost-prohibitive, as well as to improve the world-
wide perspective on AF-NCS, the development of a coarser but global 
agroforestry monitoring system (akin to Global Forest Watch110) could 
be a worthwhile objective.

Potential and implications of agroforestry 
expansion
To help motivate and spatially prioritize investment, multiple studies 
have estimated or mapped the global mitigation potential of AF-NCS. 
These efforts have focused on modelling locations where agrofor-
estry is biophysically possible, only sometimes adding constraints 
to maintain crop yield or ensure cost-effectiveness8,9,11. These results, 
aggregated to the globe, suggest that cost-effective potential is as 
high as 1.12 Pg CO2 yr−1 (ref. 9), placing agroforestry among the most 
promising NCSs.

Combining these estimates of mitigation potential9 with data 
on contemporary woody carbon density in agricultural lands11, NDC 
ambitions10,111 and levels of economic development112 provides a telling 
look at the global status of AF-NCS. Potential additional agricultural 
woody carbon density is dramatically higher than current density on all 
continents except Africa, where contemporary woody carbon density is 
close to the modelled capacity in many regions (Fig. 5a). Furthermore, 
woody carbon density is significantly higher in countries that mention 
agroforestry in their NDCs (n = 81) than in those that do not (n = 81; 
Welch’s t-test, P = 1.92 × 10−5), yet potential additional density shows 
no such difference (P = 0.397; nNDC = 80, nnon-NDC = 77). Given the general 
inverse relationship between economic development and agricultural 
tree cover, much of the global opportunity lies in Global North coun-
tries, which rarely mention agroforestry in their NDCs despite being 
among the highest-potential nations (Fig. 5b).

This mismatch between potential and ambition suggests that 
agroforestry awareness is greatest in nations where trees remain 
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a dominant feature in agricultural landscapes. This highlights a 
need to promote a broader understanding and awareness of the 
value of agroforestry across diverse economic, social and cultural 
contexts. Much of agroforestry research has focused on developing 
small-scale systems that improve economic outcomes and increase 
the food and climate security of the rural poor. However, there is also 
a need to continue developing and expanding viable mechanized 
agroforestry systems in regions with expansive, monocrop agri-
culture, to increase carbon storage and support biodiversity and 
ecosystem services4,113. Because broad-scale agroforestry adoption 
may impose costs (for example, more complicated management and 
longer pay-off times for tree crops versus annual crops), especially 
in temperate climates, there is a need for targeted research aimed 
at lowering barriers to adoption. The growing appetite for NCSs to 
meet net-zero commitments114 might present an opportunity for 
the private and public sectors to catalyse essential research and 
development in this area.

The future of AF-NCS will depend on the improved incorporation 
of agroforestry into MRV systems and thus incentive mechanisms, 
across sectors and geographic scales. In national emissions inven-
tories, agroforestry reporting is typically piecemeal and uncoor-
dinated, primarily because the diversity of agroforestry systems is 
divided between the two categories of ‘Agriculture’ and ‘Land Use, 
Land Use Change, and Forestry’ that comprise the IPCC approach to 
Agriculture, Forestry, and Other Land Use (AFOLU) accounting, and 
further subdivided across nationally defined land-use types within 
them10. The result is a complete lack of standardization and a near 
invisibility of agroforestry across NDC reporting streams10. Remote 
sensing can provide the most reliable and globally consistent source 
of AFOLU activity data, but, as discussed above, open-canopy and 
closed-canopy agroforestry systems pose major and distinct chal-
lenges. Emergent tree-based remote sensing methods may signal a 
globally consistent approach to comprehensive AFOLU emissions 
accounting74, and the development of an algorithm that can detect 
the full diversity of agroforestry systems could provide a unified 
home for agroforestry within that, while also reducing dependence 
on still-uncertain emission factors. That, in turn, could provide trac-
tion for the further integration of AF-NCS into incentive mecha-
nisms for land-based mitigation efforts, especially in developing 
nations, where agroforestry already makes a major contribution to 
the production of food, fodder, fibre and forest products. Examples 
of such mechanisms include not only voluntary carbon markets but 
also national115 and regional116 government programmes, as well as 
the most prominent international mechanism, REDD+. Despite the 
heavy focus of REDD+ on natural forests, 17.5% of projects in a public 
database already utilize agroforestry117, and emergent jurisdictional 
initiatives that promote agroforestry signal growing opportunity (for 
example, in Acre, Brazil118). Improved ability to monitor agroforestry 
adoption could enable the integration of AF-NCS actions into broader 
programmes and frameworks, such as the Bonn Challenge and the 
forest landscape restoration paradigm119.

Regardless of improvement in policy frameworks, the future of 
AF-NCS on the ground ultimately hinges on the decisions of many 
individual farmers and ranchers to adopt or maintain agroforestry. 
This, in turn, depends on local decision-making contexts that enable 
and incentivize agroforestry and minimize barriers. Governments and 
non-state actors wishing to promote AF-NCS must continue developing 
research, policies and programmes to address the various barriers and 
enablers, including land-tenure rights and security, access to techni-
cal knowledge and training, credit access and short-term funding, 
market development and access, and market failures and misaligned 
incentives120–123. From an NCS perspective, the fact that agroforestry 
climate mitigation is predominantly a public benefit, rather than a 
private benefit to the farmer, creates a market failure that can serve as a 
major barrier120. Carbon markets and other payment schemes can help 

rectify this, transmuting public benefits into private ones124 — especially 
as agricultural MRV protocols mature82. However, many of the other 
potential agroforestry benefits may accrue to farmers directly and 
thus more directly influence their decisions122,124. Enthusiasm about 
the many potential benefits of AF-NCS is justified but must be paired 
with recognition that the actual outcomes of agroforestry adoption 
are complex and context-dependent125 and can impose important 
trade-offs. Realistic knowledge of outcomes is frequently lacking120, 
but mechanistic modelling57, meta-analysis6,7 and local co-development 
of applied research121,125 will all play important roles in generating the 
knowledge needed to inform farmers’ decisions about whether and 
how to adopt agroforestry.

Conclusions
Decades of research demonstrate agroforestry’s potential to help miti-
gate climate change while also improving agricultural livelihoods and 
sustainability. However, an extensive and prioritized scientific effort 
is needed to transition AF-NCS from potential to practice. Synthesiz-
ing existing knowledge to elucidate the factors driving the climate 
outcomes of agroforestry actions is a first critical step. Simultane-
ously, improved reporting of carbon stocks and covariates can help 
further reduce the uncertainty of mitigation estimates. Improvements 
in remote sensing methods and in the quality and quantity of spatial 
data will enhance agroforestry mapping abilities, opening opportuni-
ties to develop more rigorous, replicable and consistent MRV protocols. 
Finally, the successful expansion of AF-NCS will depend on an outsize, 
decentralized effort to incentivize agroforestry investment and remove 
barriers, not only in developing nations but across all suitable agricul-
tural lands. Agroforestry’s greatest strength is its multifunctionality.  
Agroforestry not only has the potential to provide climate change 
mitigation — the focus of this Perspective — but also can play a crucial 
role in a holistic, systemic response to climate change, supporting 
adaptation and enhancing the resilience of the global food system 
while improving rural livelihoods.

Data availability
All data used in this study are publicly available from their original 
providers via the supplementary materials and/or requests to the cor-
responding authors of the originating peer-reviewed publications, 
except the summary data we gathered about previous agroforestry 
meta-analyses and the agroforestry site geographic coordinate data 
that we collected from the primary literature. We have made all data 
available in our GitHub repository (http://github.com/naturalclimates-
olutions/AF_as_NCS; https://doi.org/10.5281/zenodo.8209212).

Code availability
All code used for this study is provided at http://github.com/naturalcli-
matesolutions/AF_as_NCS (https://doi.org/10.5281/zenodo.8209212).
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SUPPLEMENTARY METHODS

Overall

The concepts and content for this paper developed out of a workshop “Agroforestry as a Natural 
Climate Solution: Cultivating the Science” hosted by TNC in 2021, as well as a series of structured 
discussions that followed. Analysis and plotting were done primarily in Python (version 3.9.12)126 
using standard-library modules and a number of third-party Python packages127–134, with some 
preprocessing also done in Google Earth Engine135 and R (version 4.0.5)136.

Comparisons between global estimates of agroforestry land area, carbon stocks, and mitigation 
potential

Any cited global estimates of agroforestry land area, carbon stocks, and mitigation potential were 
gathered directly from publications or their supplemental materials, where available8,9,11,15,16,41,89,90, and 
were converted to common units as necessary (Mha, Pg C, and Pg C yr-1, respectively). In the case of 
Zomer et al.16 estimates, we assumed that carbon represents the same fraction of tree biomass in that 
study as in their previous study15. We estimated global agroforestry AGC stocks by summing the 
Global Forest Watch AGB map13 (the basis for the Chapman et al.11 map, developed using the 
methods laid out by Zarin et al.14) within all ‘agroforestry’ pixels, then multiplying by the IPCC-
recommended carbon:biomass ratio of 0.47 to estimate AGC. 

Literature-coverage across previous meta-analyses

As part of our larger database-construction effort, we collected the underlying primary studies 
covered by 21 previous synthetic reviews (all of the reviews we found that included a systematic 
method for identifying primary studies)17–37, as part of a much larger search across over 25,000 papers.
We combined all of the primary studies in a single spreadsheet, annotated each primary study with all 
of the meta-analyses that drew data from it, then summarized the resulting matrix to calculate the total
number of primary studies that occurred at least once, the percentage and number of primary studies 
covered by only N meta-analyses, and the maximum N for which the number of primary studies was 
greater than zero, and plotting the result (Fig. S1).

Comparison between AGC and SOC   in situ   estimates  

We chose the original aboveground woody carbon (AGC) and SOC data from Cardinael et al.17 as our
field carbon dataset (henceforth, ‘Cardinael data’) because it was the most rigorous and 
comprehensive compilation available to us, given that the authors collected detaield information on 
agroforestry practice types, carbon estimates, their geographic coordinates, and related covariates to 
generate IPCC Tier 1 default emission factors.

To visualize variation in Cardinael data estimates of AGC and SOC stock changes after agroforestry 
adoption, both within and between agroforestry practices, we first reclassified practices in the 
Cardinael dataset to allow for comparative analysis: we folded data from shaded perennial-crop 
systems (which had no SOC data) into the multistrata class, and we dropped data from parklands 
(which has only 7 AGB samples and 2 SOC samples) and hedgerows (which report carbon stocks per 
kilometer hedgerow length, rather than per hectare). (See Cardinael et al.17 Table 1 for full-detail 
definitions of agroforestry system types.) We then produced a series of horizontal, split violin plots, 
colored by agroforestry practice (Fig. 2). Each violin depicts a kernel density estimate (KDE) of AGC
stock-change estimates above its central axis (i.e., upward-facing, solid color) and of SOC stock-
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change estimates below (downward-facing, transparent color). Medians of the values depicted in the 
KDEs are plotted as black ticks on the central axis; medians calculated including the negative stock-
change values that are necessarily omitted from the log-transformed KDEs are depicted as red ticks 
superimposed on the SOC data (as this is the only pool with negative stock-change values). The 
counts of values represented by the AGC and SOC KDEs are provided in black at the left (above and 
below the x axes, respectively), and the count of omitted negative SOC stock-change values is 
provided at the far left, in red.

Comparison between   in situ   and remotely sensed AGC estimates  

To compare in situ AGC estimates (displayed in Figure 2) to remotely sensed estimates, we used 
Google Earth Engine (GEE135) to extract remotely-sensed woody carbon density estimates at the 
geographic coordinates of each in situ. We extracted these values from two maps of aboveground 
woody biomass: 1.) the Chapman et al.11 map of aboveground woody biomass in global agricultural 
lands ca. 2000 (but with pixels set to zero where forest loss occurred between 2000 and 2014 
according to Hansen et al.137; henceforth, the ‘Chapman map’); and 2.) the precursor to the Chapman 
map, a global woody biomass ca. 2000 that is not masked to only agricultural lands (based on a global
extension of the Zarin et al.14 algorithm and available through Global Forest Watch13; henceforth, the 
‘Zarin map’). We chose these two datasets because comparison between them would allow us to 
elucidate potential underestimation in current global estimates of agroforestry mitigation potential. 
This is because: a.) the Chapman map is generally considered our best current understanding of global
variation in agricultural woody biomass (and hence, by proxy, global variation in agroforestry), and 
estimates derived from this map9 factor into current IPCC estimates for global agroforestry mitigation 
potential38; yet, b.) the Chapman map is derived from a subset of the full biomass data and is masked 
to only pixels covered by global maps of either cropland or pastureland, then masked again to only 
pixels with ≤25% tree cover (i.e., ‘forest’ pixels), using Landsat-derived tree-cover data137. Because of
this relationship, the Chapman map is expected to miss closed-canopy agroforestry systems with 
characteristically high biomass (e.g., multistrata systems), and thus to underestimate global 
agroforestry mitigation potential.

Before extracting map values, we first combined the crop and pasture Chapman layers per the 
Chapman methods11: we resampled the coarser-resolution pastureland dataset to the nominally 30-
meter resolution of the cropland dataset, kept the more-refined cropland values wherever they were 
available, kept pasture land values elsewhere, and masked out all pixels having no value for either 
layer. We then converted each biomass map from its native units (Mg biomass ha-1) to the common 
carbon units of the Cardinael data (Mg C ha-1) by multiplying by 0.47 (as above), before finally 
extracting values at Cardinael in situ estimates.

We plotted published estimates against remotely sensed estimates (Fig. S3). We included only points 
that fell within unmasked values for at least one of the two map datasets (Chapman or Zarin; some 
points did not intersect with either dataset and thus are not included). We also styled the points to 
differentiate between those that intersect both the Chapman and Zarin maps (circles) and those that 
are missed by the Chapman map (stars), then used that same styling to differentiate between: the mean
in situ and remotely-sensed values for the points intersecting both the Zarin and Chapman maps 
(larger, black, hollow circle); and the mean values for all points, including those that only intersect the
Zarin map (larger, black, hollow star). The discrepancies along the axes give an indication of the 
underestimation likely embedded in Chapman-based estimates of mitigation potential used by Roe et 
al.9 and by IPCC38. To visualize exact-zero values (which occur in remote sensing data but not in in 
situ data), we plotted them within the shaded gray region at the bottom of the plot, along an artificial 
zero line superimposed onto the log-transformed axes and represented by the tick label ‘ ’, below ∅
the y-axis broken stick.

To explore the potential drivers of divergence between published and remote-sensing estimates — and
thus the potential for refinement of agroforestry carbon estimates using AGB remote sensing data at 
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moderate (i.e., Landsat) resolution — we collected ancillary data on a pair of potential predictors of 
this discrepancy, then summarized them statistically. (Note that we consider the published estimates 
as the ‘targets’ of the remote sensing estimates because, despite measurement error, they are likely to 
be much closer to the true values, given that they are detailed, continuous-valued, plot-based field 
measurements.) We then calculated divergence as the difference between a published measurement 
and its remotely sensed estimate (such that a negative divergence indicates overestimation by remote 
sensing data and a positive divergence indicates underestimation).

One potential explanatory factor of divergence is the difference in measurement years between 
remote-sensing data (ca. 2000) and published data (variable). We reviewed each primary study 
associated with the Cardinael data and noted the year of data collection associated with each 
measurement, either as directly reported in the primary study (when available) or else however the 
year could be best estimated from description of field efforts within the primary study (with the year 
prior to publication serving as the best available estimate when no more refined information was 
available). We then calculated time discrepancy as the difference between the published measurement
year and the remote sensing measurement year (i.e., 2000), such that negative time discrepancies 
indicate measurements collected prior to 2000 and vice versa. We ran and plotted (Fig. S4) the simple 
linear regression (SLR) model divergencemeas ~ β0 + β1 discrepancytime + ε, then used the t-test 
associated with coefficient β1 to test the null hypothesis that variation in divergence is uncorrelated 
with variation in time discrepancy (versus our alternative hypothesis that there is a positive, linear 
relationship between the two, given that sites with published estimates predating remote sensing 
estimate would usually be overestimated by remote sensing, and vice versa, excepting the potential 
for vegetation-clearing events that occur between the collection dates of published and remotely 
sensed data).

Another potential explanatory factor is the level of precision of the geographic coordinates associated 
with the published measurements summarized by Cardinael et al. For each published measurement, 
we quantified coordinate precision by calculating the mean number of decimal points prior to either a 
repeating digit or the final digit in the reported latitude and longitude values of the measurement’s 
geographic coordinates. We ran and plotted (Fig. S5) the simple linear regression (SLR) model 
divergencemeas ~ β0 + β1 |precisionspace| + ε, then used the t-test associated with coefficient β1 to test the
null hypothesis that variation in divergence is uncorrelated with variation in spatial precision (versus 
our alternative hypothesis that there is a negative fitted relationship between the two, given that we 
expected to see a cone of heteroskedasticity narrowing to the right as divergence drops toward zero 
with increasing coordinate precision).

Comparison of known agroforestry study locations and global agroforestry maps

To compare the distribution of known agroforestry locations to global maps estimating agroforestry 
locations, we collected geographic coordinates of known agroforestry study sites, then plotted those 
coordinates on top of raster maps from two distinct mapping efforts (in a global equal-area projection;
World Eckert IV; EPSG:54012). To help interpret both map overlays, we calculated both maps’ 
latitudinal rolling averages of agroforestry site coverage (defined as the fraction of agroforestry sites 
that fall within a map’s non-masked pixels), then showed the results as a vertical line plot to the right 
of each map, including a solid, bold line for the paired map at left and a dotted, faint line for the 
comparator map. We extracted point coordinates of agroforestry study sites documented in the 
scientific literature, as part of our wider database-construction effort. These points (N=992) come 
from a total of 528 studies, including those covered by previous agroforestry carbon-sequestration 
meta-analyses and additional relevant studies we have already processed, providing as comprehensive
and unbiased a representation of the spatial distribution of known agroforestry study sites as we are 
currently capable. When locations were reported with identifiable place names but without 
coordinates, we made reasonable best effort to digitize the locations using visual inspection on Google
Maps or Google Earth. For coordinates reported as bounding boxes rather than points, we plotted the 
box centroids.
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The raster data used (Figure 3) is a map of agricultural woody biomass from Chapman et al.11). To 
produce this figure, we color-mapped the Chapman map so as to distinguish between pixels ≤ 5 Mg C 
ha-1 (i.e., ‘non-agroforestry’) and pixels > 5 Mg C ha-1 (i.e., ‘agroforestry’), per Chapman et al.11 
methods, and we plotted known agroforestry study sites as black circles (where they overlap with 
Chapman map) and red circles (where they do not overlap). To reduce the RAM required for 
visualization, we aggregated the Chapman to approximately 3 km resolution on GEE before exporting
it as a GeoTIFF. We used this aggregated dataset, rather than the native-resolution (~30 m) Chapman 
map, to visualize the overlap between the Chapman map and the known study sites, for two reasons: 
1.) extraction of the native-resolution map shows that the majority of the known sites do not overlap 
with the Chapman map, both because of the inherently patchy nature of the Chapman map’s input 
agricultural masks and because of the known sites’ geographic imprecision being often much greater 
than the 30 m nominal resolution of the Chapman map; and 2.) the sites that still do not overlap with 
Chapman map, even after aggregation to approximately 3 km, provide a better indication of regions 
where known sites are a considerable distance from any valid Chapman values, and thus indicate 
regions where overlap is poor not only because of the intrinsic uncertainty of both datasets (which 
occurs globally) but also because of any bias embedded in the Chapman map.

Depiction of spatial precision and resolution and temporal dynamics in an exemplary agroforestry 
system

To demonstrate some common considerations for remote sensing-based monitoring of agroforestry, 
related to spatial precision, spatial resolution, and temporal dynamics, we hand-selected a known 
agroforestry study site, then plotted both contemporaneous remote-sensing imagery of the site’s 
region (Figure 4a) and of the site itself across varying spatial resolutions (Figure 4b), as well as 
plotting coregistered and equal-resolution imagery of the site through time, starting in 2001 and 
proceeding until the present (Figure 4c). We selected our site based on the requirement that it have 
high coordinate precision (and thus could be readily identified in aerial imagery) and that it have 
ample, cloud-free, publicly-available imagery, taken in roughly the same time of year, for all of our 
target satellite and aerial remote sensing datasets (which we determined by methodical visual 
inspection). Our final site cannot be published openly, to maintain anonymity, but is a coffee 
agroforestry system in Latin America.

To produce a series of concentric circles depicting the spatial uncertainty associated with coordinates 
of increasing degrees of precision, we displayed the default GEE basemap imagery for our site’s 
region, then overlaid on that image circles of radii corresponding to 1 decimal degree of coordinate 
precision (i.e., roughly 11 km at the equator), 2 decimal degrees (i.e., roughly 1.1 km at the equator), 
and 3 decimal degrees (i.e., roughly 110 m at the equator). We then estimated the coordinate precision
associated with the geographic coordinate points we were able to collect from sites reported in the 
primary the literature (i.e., the point data displayed in Figure 3, but excluding sites that were 
originally reported as bounding boxes rather than points, as well as sites that we manually digitized 
from place names reported without point coordinates) and calculated the percentage of those 
measurements ≥ each of the three levels of precision displayed in Figure 4a. To estimate precision, we
used the same method described in the section ‘Comparison of in situ and remotely sensed AGC 
estimates’, above.

To compare spatial resolutions between remote sensing imagery (Figure 4b), we first loaded three 
public datasets of increasing resolutions into GEE from the GEE data catalog (30 m: Landsat 8 
Collection 2 Tier 1 top-of-atmosphere reflectance data; 10 m: Sentinel-2 MultiSpectral Instrument 
Level-2A reflectance data; and 5m: the Planet Tropical Americas basemaps, produced under the 
NICFI program and made available by Planet’s GEE integration functionality). Given that we relied 
on Google Earth (GE) to explore the temporal record of high-resolution aerial imagery (© 
CNES/Airbus, Maxar Technologies) at our chosen site (see next paragraph), we then filtered our 
loaded satellite datasets to the most recent GE-displayed year that overlaps with all of the available 
satellite archives (i.e., to 2021). Next, we sorted the resulting annual series of Landsat and Sentinel 
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images by increasing cloud-cover, then used the dates of the top (i.e., highest-quality) images to 
choose a three-month period of the year within which to compare images across spatial resolution 
(and across time; next paragraph). Finally, we plotted each of a set of 4 images (Landsat, Sentinel, 
Planet, and CNES/Airbus), using cloud-free imagery that was as close in date as possible, and 
manually scaling reflectance values to visually match color palettes as closely as possible. For each 
plotted image, we captured a high-resolution screenshot (using the default screenshot tool provided by
Linux Pop!_OS 21.10) of an identical rectangular area, framed using polygons plotted onto the maps 
in GEE.

To produce a time series of same-season imagery for our site (for Figure 4c), we used GE to frame the
same rectangular area as in Fig. 4b. We then perused the record of high-resolution (i.e., sub-meter) 
aerial imagery (© CNES/Airbus, Maxar Technologies) to screenshot coregistered, maximally-zoomed
imagery of our site for any cloud-free images available within our chosen three-month period of any 
year. For demonstrative purposes, we placed those images in 2d space (time, tree cover), then 
superimposed the approximate trajectory of tree cover observed at the site over time.

Comparison of current and potential agricultural woody C, by NDC ambition, continent, and country

To compare current and potential agricultural woody carbon density by continent, we combined ca. 
2000 estimates from Chapman et al.11 (using tabular, country-level estimates extracted from their 
supplemental information) with cost-effective mitigation potential estimates from Roe et al.9 (country-
level estimates extracted from supplemental information). We converted Chapman map data from Mg
biomass ha-1 to Mg C ha-1 by multiplying by 0.47 (as above), then calculated a single, mean-density 
value as the average of cropland and pastureland densities, weighted by the relative national land 
areas of each. We merged the two resulting tabular datasets, then merged onto them a tabular dataset 
of agroforestry ambitions expressed in NDCs. We produced this NDC dataset using the data from 
Rosenstock et al.10, which indicates whether or not each non-Annex I country mentions (either 
explicitly or implicitly; see Rosenstock et al. methods for details) agroforestry activities within their 
Paris Agreement NDC, then supplementing that with similar but less-detailed IUCN NDC data111 
gathered by Chapman et al.11 for Annex I countries. Finally, we merged that table onto a country-
boundaries dataset, then assigned countries to continents for stratified analysis. We used the resulting 
dataset to create a continent-colored, paired box-and-whisker plot of the resulting dataset, plotting 
both current density (solid colors) and potential density (transparent colors), both for countries that do
not mention agroforestry in their NDCs (gray vertical sections of the plot) and those that do (white 
vertical sections) (Fig. 5a; plots depict a median center line, 1st- and 3rd-quartile box limits, whiskers 
extending to 1.5x the inter-quartile range, and outliers plotted outside them). To determine whether 
current and/or potential agricultural woody carbon densities differ significantly between countries 
with expressed agroforestry NDC ambitions and those without, we ran an independent, two-sided 
Welch’s t-test (to account for unequal variances) of the current, area-weighted average agricultural 
woody carbon densities of countries in those two categories (nNDC = 81 nnon-NDC = 81), as well as an 
identically structured t-test of the cost-effective, potential densities modeled by Roe et al. 9 (nNDC = 80,
nnon-NDC = 77).

To depict that data by country, in comparison to an indicator of economic development, we first 
downloaded Human Development Index (HDI) data from the UNDP (using year-2000 data112, to 
match the year for which current woody carbon densities are estimated) and merged that onto the 
tabular dataset explained above. We then produced a scatterplot comparing year-2000 average 
agricultural woody carbon density (ln-transformed) to year-2000 HDI (Fig. 5b). We colored each 
country’s point by continent (as in Fig. 5a), styled it to indicate whether it mentions agroforestry in its
NDC (circles) or not (X’s), and sized it according to cumulative, cost-effective agroforestry mitigation
potential by year 2050 (as estimated by Roe et al.9), labeling countries in the 95th percentile of 
cumulative potential. Finally, we used SLR to estimate and plot (within the 95-percent confidence 
interval) the model ln(woody_C2000) ~ β0 + β1 HDI2000 + ε, then reported the R2 and p-value.
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Estimation of percent of REDD+ projects using agroforestry

To estimate the percent of REDD+ projects that incorporate agroforestry, we first downloaded the full
version 4.2 dataset from the “International Database on REDD+ projects and programs: Linking 
Economics, Carbon and Community” (ID-RECCO)117. We then calculated the percent of projects 
listing ‘agroforestry’ among their activity details (i.e., the percent of rows in sheet ‘1. Projects’ with 
the term ‘agroforestry’ included in the contents of the column ‘Details for Afforestation/Reforestation 
activity’).
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SUPPLEMENTARY FIGURES

Figure S1: Coverage of primary studies in agroforestry carbon syntheses. Plot shows the number 
of primary studies having each of the values of ‘coverage’ (i.e., number of syntheses in which the 
primary study’s data was used), up to the highest observed coverage of 8 (out of a maximum potential
coverage of 21).
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Figure S2: Conceptual organization of global trees. A diagram representing all of the world’s trees 
(outer, dark gray circle), divided between trees outside forest (TOF; dark brown half circle) and trees 
within forest (dark green half circle) ), and simultaneously divided between non-agroforestry trees 
(bright-colored segments) and agroforestry trees (pale-colored segments, within the inner, light gray 
circle). (Diagram segments are arbitrarily scaled.) Remote sensing and MRV methodologies often rely
on the classification of pixels into forest and non-forest categories, such that agroforestry systems can 
be considered as consisting of TOF (i.e., open-canopy systems) or forest trees (i.e., trees in closed-
canopy systems). Comprehensive carbon accounting frameworks for the agriculture, forestry, and 
other land use (AFOLU) sector may be able to leverage emergent, tree-based (rather than pixel-based)
remote sensing methodologies to circumvent this complication.
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Figure S3: Comparison between field-measured and remotely sensed agroforestry aboveground 
carbon (AGC) stocks. There is little apparent correspondence between AGC stocks measured at field
sites described in the primary literature (N=273) and AGC estimates derived from the highest-
resolution global remote sensing product available. The x-axis shows the same, log10-transformed 
AGC data as that displayed in Figure 2, and the y-axis shows log10-transformed values extracted from 
the unmasked 30-meter global biomass map available from Global Forest Watch13 — the precursor to 
the Chapman et al.11 agroforestry map, prior to exclusion of non-agricultural pixels and high-tree-
cover pixels. The expected 1:1 line is also shown. Point style indicates whether a site falls within a 
pixel included in the final Chapman map (circles) or not (stars). We also show the means of only 
Chapman-covered sites (large black circle) and for all sites (large black star), highlighting that sites 
not included in the Chapman map lead to lower mean mitigation potential estimates in both field-
measured and remotely sensed data (red annotation ‘A’); the downward bias in remote sensing data 
propagates through peer-reviewed publications9 and IPCC reports38 derived from the Chapman map. 
Sites in the gray-shaded region below the y-axis broken stick have zero remotely-sensed AGC, yet 
vary widely in their field-measured estimates (red annotation ‘B’).  We also note that the discrepancy 
between field-measured and remotely sensed agroforestry AGC is largely insensitive to temporal 
misalignment (Fig. S4) and entirely unrelated to the spatial precision of published field coordinates 
(Fig. S5). These challenges reinforce the known limitations of moderate-resolution data for 
agroforestry mapping and carbon estimation. 
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Figure S4: Discrepancy between published and remote sensing carbon stock estimates is 
partially attributable to discrepancy in data-collection years. The difference between published 
and remotely-sensed estimates increases as a function of the difference between their collection years 
(R2 = 0.112).  The slope of the relationship is positive and significant (slope=2.837 Mg C ha-1 yr-1; p =
1.29×10-7). This suggests some room, albeit quite limited, for improvement in AF carbon stock 
measurement using moderate-resolution remote sensing data. Only 13.18% of measurements have the 
same year as the remote sensing dataset (year 2000), 48.45% differ by up to 5 years, 22.87% differ by 
between 5 and 10 years, and 15.50% differ by more than 10 years. Sites are colored by AF practice, as
in Fig. 2.
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Figure S5: Discrepancy between published and remote sensing carbon stock estimates is not 
related to spatial precision of published geographic coordinates. The difference between 
published and remotely-sensed estimates has no significant linear relationship with the spatial 
precision of the decimal-degree geographic coordinates reported in AF field studies (R2 = 0.0093). 
The slope of the relationship is indistinguishable from 0 (slope=-1.911 Mg C ha-1 degree-1; p = 0.14). 
If increasing imprecision improved the ability of moderate-resolution remote sensing imagery to 
estimate AF aboveground carbon stocks then the scatterplot would be expected to be heteroskedastic 
(with greater variance at left) and to exhibit a significant negative slope. Sites are colored by AF 
practice, as in Fig. 2
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SUPPLEMENTARY   TABLES  

Table S1: Potential predictors of variation in agroforestry carbon stocks and fluxes that have been 
mentioned in previous studies, other than the commonly used categorical variable of agroforestry 
practice type (e.g., 17,18,25,35,36,138)

Potential predictor References

Previous land use Demessie et al. 2014139, Lorenz et al. 2014140, van Straaten et al. 
201547, Chatterjee et al. 201825, De Stefano and Jacobson 201818

Age of system Fassbender 1998141, Oelbermann et al. 2004142, Demessie et al. 
2014139, Lorenz et al. 2014140,Chatterjee et al. 201825, Ma et al. 
202029, Corbeels et al. 2019143

Soil management practices 
(e.g., tillage, application of plant
residue)

Hulugalle et al. 1990144, Fassbender 1998141, Albrecht et al. 
200343, Soto-Pino et al. 2009145, Winans  et al.. 2014146, Dhyani  
et al.. 201653, Shrestha et al. 201831

Soil class Demessie et al. 2014139, Muñoz-Rojas et al. 2015147, Hübner et 
al. 20221

Soil fertility Amézquita et al. 2009148

Initial SOC Minasny et al. 2017149, Corbeels et al. 2019143

Clay content Demessie et al. 2014139, Lorenz  et al. 2014140, Hübner et al. 
202121

Altitude Amézquita et al. 2009148, Nath et al. 202133

Climate Lorenz  et al. 2014140, Cardinael et al. 201817, Ma et al. 202029, 
Ahirwal et al. 202136, Hübner et al. 202121, Nath et al. 202133  

Topography Amézquita et al. 2009148, Demessie et al. 2014139

Mean annual temperature Amézquita et al. 2009148, Dhyani  et al.. 201653, Ahirwal et al. 
202136, Hübner et al. 202121

Mean annual precipitation Dhyani  et al.. 201653, Ahirwal et al. 202136, Hübner et al. 202121

Vegetation management (e.g., 
pruning frequency)

Romero et al. 1991150, Oelbermann et al. 2004142

Tree density Somarriba et al. 2008151, Demessie et al. 2014139

Tree species Albrecht et al. 200343, Oelbermann et al. 2004142, Somarriba et 
al. 2008151, Demessie et al. 2014139, Wotherspoon et al. 2014152, 
Dhyani et al. 201653

Tree functional type (e.g., 
coniferous, broadleaf; N-fixing)

Demessie et al. 2014139, Lorenz et al. 2014140, Mayer et al. 202223

Tree diversity Demessie et al. 2014139, Lorenz  et al. 2014140, Islam et al. 
2015153, Lovell et al. 2018154, Ma et al. 202029
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