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CORRIGENDUM 3 WILEY

Correction to “Genomic architecture controls multivariate
adaptation to climate change”

Terasaki Hart, D., E., & Wang, 1., J. (2024). Genomic architecture controls multivariate adaptation to climate change. Global Change Biology,
30(2), e17179. doi: 10.1111/gch.17179.

Figures 4, S3, and S4 show rows of data ordered identically to other paneled figures: top-to-bottom, the rows show the results for sce-
narios with independent, weak, and strong linkage. However, the original row labels in Figures 4, S3, and S4 were out of order, reading,
top-to-bottom, “weak,” “strong,” and “independent.” The order of these labels has now been corrected to “Independent,” “Weak,” “Strong,”

top-to-bottom. The corrected Figure 4 is below.

Also, the end of the last sentence in the section Results: Gene flow stated “differences between moderate- and high-redundancy scenarios

were minor.” That was a typo. It should have read “differences between moderate- and high-polygenicity scenarios were minor.”

We apologize for any confusion this caused.

FIGURE 4 Scatterplots of the observed versus expected phenotypic shift during the climate change period for all 18 of our simulated
scenarios. For each scenario, the left (“before”) scatterplot shows the distribution of phenotypes before climate change begins, and the
right (“after”) scatterplot shows how the distribution has shifted by the end of the climate change period. The trait adapted to the shifting
environmental gradient is distributed along the x-axis, with the trait adapted to the stable gradient on the y-axis. Each plot is an ensemble
of the results for all 100 replicates of each scenario. The size and opacity of each point represent the number of individuals exhibiting that
two-dimensional phenotype. The gridded arrangement of the points in each scatterplot is a function of the number of loci per trait, which
determines the set of possible phenotypes. Solid black lines delineate the shifts in the phenotypic distributions' central tendencies that are
expected to take place during the climate change period; dotted black lines depict the observed distributions' central tendencies; and red
wedges depict the differences between the expected and observed distributions (“phenotypic shortfall”).
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to environmental change under scenarios defined by variation in the polygenicity, link-

gradient that shifts under climate change. We used these simulations to examine how
genomic architecture influences evolutionary outcomes under climate change. We
found that climate-tracking (up-gradient) gene flow, though present in all scenarios,
was strongly constrained under scenarios of lower linkage and higher polygenicity and
redundancy, suggesting in situ adaptation as the predominant mechanism of evolu-
tionary rescue under these conditions. We also found that high polygenicity caused
increased maladaptation and demographic decline, a concerning result given that many
climate-adapted traits may be polygenic. Finally, in scenarios with high redundancy,
we observed increased adaptive capacity. This finding adds to the growing recognition
of the importance of redundancy in mediating in situ adaptive capacity and suggests

opportunities for better understanding the climatic vulnerability of real populations.
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adaptation, climate change, gene flow, genetic redundancy, genomic architecture, landscape
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1 | INTRODUCTION current ranges will likely depend largely upon their abilities to

locally adapt to new climate conditions—a concept frequently
Climate change is one of the foremost threats to biodiversity in referred to as “adaptive capacity” or “evolutionary potential”
the Anthropocene. The ability of species to persist within their (Chevin et al., 2010; Harrisson et al., 2014; Nicotra et al., 2015;
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Vilas et al., 2015; Wade et al., 2017). Because beneficial de novo
mutations take a long time to arise, this adaptation will likely
be facilitated by the reconfiguration of existing adaptive ge-
netic diversity (Bomblies & Peichel, 2022). A common concep-
tual model underlying this scenario is that of adaptive gene flow
tracking a shifting climatic gradient (Ackerly et al., 2010; Loarie
et al., 2009), which would bring beneficial genes into recipient
populations from “climate-suitable” populations whose current
climates approximate future local conditions (Bellis et al., 2020).
This model of adaptive gene flow has both theoretical (Aitken &
Whitlock, 2013; Slatkin, 1987; Tigano & Friesen, 2016) and empir-
ical (Bell & Gonzalez, 2011; Feder et al., 2012) support but meets
resistance under conditions in which gene flow can be maladap-
tive (Felsenstein, 1976; Haldane, 1930; Wang & Bradburd, 2014,
Lenormand, 2002; Slatkin, 1987; Wright, 1931). In these circum-
stances, shifting allelic covariance—the in situ recombination of
standing genetic variation into new, adaptive genotypes—could be
a more efficient mechanism underlying local adaptation to envi-
ronmental change.

In recent decades, research bridging the fields of molecular
population genetics and quantitative genetics (Barghi et al., 2020;
Barton, 1999; Pritchard et al., 2010; Pritchard & Di Rienzo, 2010)
has revealed that the genomic architecture of a trait is a core de-
terminant of whether and how that trait becomes locally adapted
(Yeaman, 2022). Among the key aspects of genomic architecture
that influence adaptation (Barton, 1999; Le Corre & Kremer, 2012;
Yeaman, 2022; Yeaman & Whitlock, 2011) are the number of loci
underlying a trait (henceforth, “polygenicity”), the rate of recombi-
nation between these loci (i.e., linkage), and the number of distinct
genotypes that yield identical phenotypes (henceforth, “genotypic
redundancy”). Previous research suggests that ecologically im-
portant traits can vary from having few loci of large effect (Martin
& Orgogozo, 2013; Rees et al., 2020) to many loci of small effect
(Barghi et al., 2020; Boyle et al., 2017; Rockman, 2012; Savolainen
et al., 2013; Sella & Barton, 2019) and shows that variation in poly-
genicity can determine the rate and nature of local adaptation
(Yeaman, 2015). Linkage controls the likelihood that adaptive alleles
cluster together, essentially forming alleles of larger-effect size that
are stronger targets of selection and more resistant to swamping
gene flow (Yeaman & Whitlock, 2011), thereby facilitating local ad-
aptation (Tigano & Friesen, 2016). Genotypic redundancy—a form
of genetic redundancy that is defined as when more than one gen-
otype can produce the same phenotype (Laruson et al., 2020)—can
facilitate local adaptation by allowing the existence of a stable phe-
notypic cline governed by concerted shifts in underlying allele fre-
quencies (Barghi et al., 2019; Manceau et al., 2010; Yeaman, 2015).
We refer to this phenomenon as “transient genomic architecture.”

The influence of genomic architecture on the nature and out-
comes of local adaptation to changing environmental gradients has
been studied to a limited extent, with a nearly exclusive focus on
univariate models of the selective environment (but see Schiffers
et al., 2013). These models have limitations for studying adapta-
tion to climate change because, in nature, species can be adapted

to multiple, independent environmental gradients (Guillaume, 2011)
that can shift differentially, and thus decouple, as climate change
advances (Daly et al., 2010; Crimmins et al., 2011), leading to the
emergence of novel multivariate landscapes (Fitzpatrick et al., 2018;
Williams et al., 2007; Williams & Jackson, 2007). Thus, it is import-
ant to investigate how the genomic architectures of multiple traits
can combine to drive multivariate adaptation under climate change.
Gene flow from “climate-suitable” portions of a species' range is
often assumed to be beneficial for adaptation to climate change.
This may be accurate from the perspective of a single trait adapted
to a shifting climatic gradient, but it may be an invalid assumption
if the gene flow also carries linked variation for a trait adapted to a
second environmental variable from which the shifting gradient has
decoupled. Under this scenario, gene flow may introduce alleles for
the second trait that are disadvantageous and that could counteract
any fitness advantage gained through the first trait. Thus, the ge-
nomic architectures of both traits may determine evolutionary out-
comes by controlling the relative likelihoods of adaptation by gene
flow and of in situ adaptation by shifting allelic covariance (Aitken &
Whitlock, 2013; Schiffers et al., 2013).

Spatially explicit simulation is one of our strongest tools for im-
proving our understanding of the complex dynamics of gene flow
and adaptation under climate change (Capblancq et al., 2020). In
this study, we use individual-based, spatially explicit simulations,
constructed in Geonomics (Terasaki Hart et al., 2021), to test how
genomic architecture influences multivariate adaptation to climate
change. We simulate the adaptation of a single population contin-
uously distributed on a two-dimensional landscape composed of
two environmental variables, each structured as a gradient that
runs parallel to the x-axis (Figure 1) and that exerts selection on a
separate trait. In our main models, we then simulate climate change
on that landscape by holding one gradient constant while gradually
shifting the other gradient along the x-axis, such that the decoupling
environment pushes local fitness peaks toward novel regions of
two-dimensional trait space (Figure 1). We run 100 pairs of climate
change simulations and null (stable-climate) simulations for each of
18 scenarios resulting from the full factorial crossing of three key
components of genomic architecture: genotypic redundancy, poly-
genicity, and linkage (Table 1).

We analyze variation in the resulting spatiotemporal patterns
of gene flow, population size and density, and phenotypic distribu-
tions—all of which are emergent properties of our simulation param-
eterizations (Code Sample S1)—to test a series of hypotheses about
the influence of genomic architecture on multivariate adaptation
under climate change. First, we hypothesize that up-gradient gene
flow will be higher under climate change than under a stable climate
across all scenarios, but that gene flow contributes least to climate
change adaptation when linkage is low and polygenicity is high. This
is because we expect gene flow to always have at least some adap-
tive value, but we also expect low-linkage, high-polygenicity archi-
tectures (i.e., “dispersed” architectures; Yeaman, 2022) to exhibit
quick in situ adaptation via shifting allelic covariance among many
small-effect alleles, facilitating phenotypic shifts in the absence of
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FIGURE 1 Conceptual model of adaptation to climate change.
The top panel depicts the two-layered physical landscape used in
our simulations, showing the shifting environmental gradient (e, ) in
a blue-red color ramp and the stable gradient (e,) in a white-black
color ramp. The landscape is shown both before climate change (t,)
and after (t,). The bottom panel depicts a fitness landscape for two
traits adapted to the shifting (e,) and stable gradients (e,). Three
example positions on the physical landscape (x,, x,, x;) are shown as
boxes delineated y-axis cross-sections, both before climate change
(gray) and after (yellow), and their corresponding fitness peaks are
shown as color-matched kernels on the fitness landscape. The gray
and yellow lines on the fitness landscape indicate the fitness optima
defined by the environments that exist before (t1) and after climate
change (t,). Shifts in local fitness peaks are shown as labeled arrows
(x5, x5); the environment at the far left of the physical landscape does
not change, so x,'s fitness peaks are overlapping and have no shift.

up-gradient gene flow. Second, we hypothesize that stronger link-
age and higher polygenicity will reduce a population's adaptive ca-
pacity under climate change, manifesting as greater reductions in

ST e L

TABLE 1 Parameter values used for each of the three focal
components of genomic architecture.

Component Level Parameter value
Genotypic redundancy Low redund=1

High redund=2
Polygenicity Low n_loci=4 xredund

Mod n_loci=20xredund

High n_loci=100xredund
Linkage Low recomb=0.5

Mod recomb=0.05

High recomb=0.005

Note: The full factorial combinations of these parameter values
constitute the set of 18 simulation scenarios for which we present
results.

population size and mean fitness and more persistent maladapta-
tion, because both conditions impose longer expected wait times
for the emergence of recombinant haplotypes that push phenotypes
further from their pre-change fitness peaks. Finally, we hypothesize
that higher genotypic redundancy will facilitate adaptation to shift-
ing gradients, much as it does on stable gradients (Barghi et al., 2019;
Manceau et al., 2010; Yeaman, 2015), resulting in smaller reductions
in population size and mean fitness.

2 | MATERIALS AND METHODS
2.1 | Simulations

We performed simulations using Geonomics v1.3.6 (Terasaki Hart
et al., 2021), a Python (Van Rossum & Drake, 1995) package for
forward-time, agent-based, continuous-space landscape genomic
simulations. All of our simulated scenarios feature a species with two
traits, each of which experiences selection on the basis of a different
environmental variable. Both environmental variables are modeled
as linear gradients running along the x-axis (Figure 1) that initially
span environmental values from 1 to O, left to right across the land-
scape. The genome is modeled as an array of length L, which in our
two-trait simulations equals two times the number of genes per trait.
Instead of randomly assigning loci to either of the two traits, we al-
ternated locus trait assignment along the genome to avoid creating
islands of within-trait linkage that would vary across iterations and
introduce noise in our results. The fitness of individuals is a func-
tion of the difference between their local environmental values and
their phenotypes, which are determined by the additive effects of
multiple loci (i.e., without pleiotropy or epistasis), a reasonable ap-
proximation of many traits in real populations (Sella & Barton, 2019).
Individuals have continuous spatial coordinates, and their local envi-
ronmental values are found in the landscape cells within which their
coordinates fall. Each time step has a movement phase during which
each individual moves along a vector composed of arandomly drawn

direction (from a uniform circular distribution) and a randomly drawn
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distance [from a Wald (0.25, 0.5) distribution, such that most move-
ments are less than one landscape cell in length].

Simulations start with a neutral burn-in period that does not in-
clude differential fitness. The burn-in is concluded when statistical
tests of temporal and spatial population stability are passed, at which
point individuals are randomly assigned genomes based on 0.5|0.5
allele frequencies at all loci. Simulations then run for 2500 time steps
with differential fitness, generating a pattern of local adaptation to
the initial environment. After that, one environmental layer under-
goes a change event in which the gradient's values shift over a pe-
riod of 250 time steps, resulting in a final gradient that spans values
from 1 to 0.5, left to right. This creates a scenario in which the two
environmental variables become decoupled, leading to the emer-
gence of novel environments (i.e., sites occupying new values in two-
dimensional environmental space), effectively modeling a common
phenomenon under climate change (Fitzpatrick et al., 2018; Williams
et al., 2007; Williams & Jackson, 2007). This generates spatially het-
erogeneous rates of climate change, ranging from no change at the
leftmost edge to 0.002 units per time step at the rightmost edge. We
chose this scenario because one with spatially homogeneous rates
of change would generate an artifact of range expansion whose ge-
nomic signal could not reliably be disentangled from that of climate
change adaptation. Hence, the approach we chose here allows us to
isolate the evolutionary dynamics resulting from the components of
genomic architecture that define our scenarios and hypotheses. The
pre-climate change population sizes in our simulations varied around
5800-6100 individuals, which yields mean times to fixation of ap-
proximately 16,000-17,000 time steps (Terasaki Hart et al., 2021;
Wright, 1931), roughly an order of magnitude larger than the total
simulation length. Thus, the effects of drift during these simulations
should be low, given the relatively large population sizes.

We used a custom Python script to set values for the parameters
of interest in our simulations: the number of loci underlying each
trait (parameter n_loci), the recombination rate between neighbor-
ing loci (parameter recomb), and the level of genotypic redundancy
(parameter redund). The values we assigned to these parameters
are provided in Table 1, and a visual depiction of the difference be-
tween low- and high-redundancy scenarios for all phenotypes is
provided in Figure S1. We ran the simulations using Python v3.7 on
the savio3 partition of UC Berkeley's Savio computing cluster (each
node has 96GB RAM and 32, 2.1-GHz Skylake processors). For
each scenario, we ran a total of 100 iterations, featuring a 250 time
step climate change period with natural selection (henceforth, the
“main” scenarios), and 100 iterations of a paired null scenario with-
out natural selection (henceforth, the “null” scenarios). We set all
other Geonomics parameters to their default values. Some values
of interest that might be explicit parameter settings in other simu-
lation programs are instead emergent properties in Geonomics; for
example, the population size values we report emerge from the in-
teraction of several explicit parameters, including the raster of local
carrying capacities, the population intrinsic growth rate, the number
of offspring per reproduction event, and the death rates resulting
from the parameters controlling density-dependent mortality and

natural selection. The complete set of Geonomics parameters and
the values we assigned to them across all models are provided in
Code Sample S1. The parameters we set correspond best to a sce-
nario of a moderately mobile species with occasional longer-distance
dispersal, overlapping generations, and repeat reproduction of small
numbers of offspring.

Using a combination of internal Geonomics functions and cus-
tom Python code, we designed a set of data outputs from each model
run to visualize results and test hypotheses. We saved tables of the
locations and phenotypes for all individuals at the beginning and end
of the climate change period. We also saved time series of population
size, mean fitness, and the mean phenotype of the trait adapted to
the shifting gradient. We gathered this data at every time step for the
250 time steps immediately before the onset of climate change, 250
time steps during the climate change period, and 250 time steps after
climate change completed (hereafter, the “post-change period”).

We also saved data on the vector directions of gene flow occur-
ring during climate change by keeping data for two randomly cho-
sen loci underlying the trait adapted to the shifting environmental
gradient (with positive effect) for all of the individuals remaining in
the final time step. Capturing loci expected to facilitate adaptation
to increasing environmental values allowed us to track up-gradient
gene flow, and it provided equal sample sizes across scenarios for
downstream analysis (which was constrained to the number of
positive-effect loci in the low-polygenicity, low-redundancy sce-
narios). We collected these data using an internal function that
extracts data from the spatial pedigrees stored in the simulation's
tskit (Kelleher et al., 2018) data structures. We also calculated a
single summary metric of “up-gradient gene flow” for each iteration:

GF ,cos 6 >0,

up =

Y cos 6
n

where 0 is the angle of gene flow, expressed counterclockwise from
the right. The cos 820 condition allowed us to track only rightward (up-
gradient) gene flow and to omit leftward (down-gradient) gene flow,
which would be maladaptive for the positive-effect loci we tracked

and, thus, low irrespective of scenario.

2.2 | Analysis

We analyzed the results of our simulations using custom scripts writ-
ten in Python v3.7 (Van Rossum & Drake, 1995) and R v4.0 (R Core
Team, 2021). To test our first hypothesis—that up-gradient gene flow
should be greater under climate change scenarios—we first produced
a visualization of the directional distributions of gene flow under all
18 scenarios, comparing between main and null simulations (Figure 2)
based on the random sample of the gene flow that occurred during
the climate change period that we captured from our simulations.
We then fitted a mixture of four von Mises distributions to that data
using the R package movMF v0.2-6 (Hornik & Griin, 2014), yielding 12
parameter estimates defining each simulation's fitted mixture distri-
bution. For each of the 18 scenarios, we then plotted the probability
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FIGURE 2 Distributions of gene flow
directions during the climate change
period of our climate change simulations
(red) compared to null simulations

(blue) for our 18 scenarios. The shifting
environmental gradient moves to the
right (in the direction of the arrow) in
our simulations, so rightward gene flow
represents up-gradient gene flow, and
upward and downward (i.e., “on contour”)
gene flow is perpendicular to the
environmental gradients. Down-gradient
gene flow is expected to be maladaptive
under all scenarios, explaining why it

is universally suppressed relative to

the null results (as evidenced by the
blue distributional “margins” extending
to the left of the red distributions in

all scenarios). There is a general trend
toward increasing on-contour gene flow
and decreasing up-gradient gene flow,
with decreasing linkage and increasing
polygenicity.
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density function described by the means of all vectors of fitted pa- top of the null results (in blue; Figure 2), providing a visualization of

rameters. We did this separately for null scenarios and for main sce- the directionality of gene flow within each climate change scenario

narios, then overlaid the results for the main scenarios (in red) on compared to its null expectation.

85U801 SUOWWIOD 8AI8.D 3(qedldde ay) Aq pausenob afe See YO ‘8Sn Jo sejni o} Akeid1TauljuQ 43I UD (SUONIPUOD-PUR-SLIBYLIOD™AS| 1M AeId 1jBUlUO//SANY) SUONIPUOD pue SWIS 1 8y} 88S *[G202/20/60] U AkiqiTauljuo A8|iM ‘soines Akeiqi 018D Ag 6,T/T GOB/TTTT OT/I0p/wW00" A8 Aleiq1ul|uoy/sdny Wwolj pepeoiumod ‘Z ‘%20z ‘98vZS9ET



TERASAKI HART and WANG

60f12
—LWI [B2A% Clobal Change Biology

We also ran a simple linear regression of the main versus null
difference in up-gradient gene flow density as a function of polyge-
nicity, linkage, and redundancy. We coded the genomic architecture
components as integer variables representing the levels of the pa-
rameter values used in the simulations (redundancy: low=1, high=2;
polygenicity: low=0, moderate =1, high=2; linkage: low=0, moder-
ate=1, high=2). We used the regression results to test both pre-
dictions for our first hypothesis: (1) that the main-null difference
in up-gradient gene flow should have 95% confidence intervals >0
under all scenarios (calculated using the stats package's predict.
1m function with the argument interval =“confidence”), indicat-
ing significant up-gradient gene flow under climate change; and (2)
that the coefficients for the linkage (4) and polygenicity (/}p) terms of

low redundancy

the model should be significantly positive and negative, respectively,
indicating that higher levels of gene flow are associated with stron-
ger linkage and lower polygenicity.

To visually assess our second and third hypotheses, we created
a series of plots comparing climate change-driven demographic
shifts and maladaptation across all 18 scenarios and between our
null and main models. First, we plotted the null and main time se-
ries of two demographic metrics, mean fitness and population size,
for each of our 18 scenarios, combining the results for all 100 iter-
ations under each scenario. For each time series, we calculated the
mean and the 5th and 95th percentiles at each time step (Figure 3;
Figure S2). We also summarized all scenarios in a pair of box plots
(Figure S2).
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FIGURE 3 Left: Mean fitness for all scenarios during the 250 time steps before, during, and after the climate change period (separated by
red, dashed lines). Black lines represent the mean values, and the shaded red and blue areas represent variability envelopes (5th percentile
to 95th percentile) for all replicates for climate change and null simulations, respectively. Right: Boxplots of changes in mean fitness during
the climate change period for all scenarios. Null scenarios are plotted on the top in blue, and main scenarios are plotted on the bottom in red.
Within each plot, the scenarios are organized by polygenicity (number of loci per trait) on the x-axis and shaded by the strength of linkage.
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To better understand changes in population size and distribution,
we also mapped before and after comparisons of population densi-
ties for all 18 main scenarios (Figure S3). Each population density
map was calculated as the mean population density at each cell on
the landscape, averaged across all 100 iterations.

Finally, to visualize maladaptation, we plotted each scenario's
mean phenotypic distributions before and after climate change as
scatter plots of the density of individuals occurring across two-
dimensional trait space. We plotted lines and wedges depicting
the average maladaptation observed across each scenario's 100
iterations (Figure 4). We refer to the wedge as “persistent malad-
aptation,” and we calculated it as the difference between: (a) the
area within two-dimensional trait space that the population's phe-
notypic distribution would have needed to shift through during the
climate change event to remain optimally fit to its environment, and
(b) the observed area of phenotypic shift within a scenario's 100
simulations. We qualify this metric as “persistent” to emphasize
that it does not reflect transient maladaptation that arises but then
resides during the period of climate change but rather reflects only
maladaptation that remained at the end of the climate change pe-
riod. To measure this area, we first determined the triangular area
between the expected central tendency lines of the optimal two-
dimensional phenotypic distributions before and after the climate
change event. Then, for each model run, we used ordinary least
squares to fit a central tendency line to the 100-iteration ensemble
phenotypic distribution observed at the end of the climate change
event [fixing the y-intercept at the (1, 1) point in phenotypic space,
which represents the unchanging phenotypic optimum at the left-
most extent of the landscape]. The area of the wedge between
the expected and observed post-change central tendency lines
provides our measure of a scenario's persistent maladaptation. We
plotted before and after scatter plots of the ensemble datasets
of individuals' two-dimensional phenotypes (binned to a grid of
regular points for interpretability). We also produced these plots
(Figure S4) using data from our null simulations to demonstrate
that all differences in maladaptation observed between scenarios
were attributable to climate change.

To statistically evaluate our results, we ran simple linear
regressions for each of our three response variables measur-
ing population-level changes during the climate change event—
change in mean fitness, change in population size, and persistent
maladaptation—with polygenicity, linkage, redundancy, and null-
ness serving as explanatory variables. We modeled nullness as a
binary categorical variable (null=0, main=1) and again modeled
the genomic architecture components as integer variables, as
described above. We used these regressions to test our second
(polygenicity and linkage) and third (redundancy) hypotheses.
Specifically, our second hypothesis predicts that the coefficients
of the linkage and polygenicity terms are significantly non-zero
and negative (for changes in fitness change and population size)
and positive (for the maladaptation model), while our third hy-
pothesis predicts significantly non-zero redundancy coefficients
with the opposite signs.
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3 | RESULTS
3.1 | Gene flow

Under our simulations, climate change led to a nearly universal
increase in up-gradient gene flow compared to null simulations
with no change to either environmental variable. For all 18 of our
simulated scenarios (Figure 2), the simulations with climate change
exhibited greater up-gradient gene flow than the null scenarios,
and linear regressions modeling the effects of linkage, redundancy,
and polygenicity on up-gradient gene flow found that the fitted
95% confidence intervals for up-gradient gene flow were >0 for
all but one scenario (the moderate-polygenicity, low-linkage, high-
redundancy scenario; Table S1). However, the magnitude of this in-
crease in gene flow was minimal under some scenarios. We found
that the difference in up-gradient gene flow between climate
change and null simulations was positively correlated with linkage
(,=0.0129 +0.0006, p<1x107*%) and inversely correlated with
polygenicity (,=0.0142+0.0006, p<1x 107%), corroborating our
first hypothesis. Correspondingly, and in line with expectations,
down-gradient gene flow was universally suppressed under cli-
mate change (Figure 2). Of the three components of genomic ar-
chitecture that we tested, polygenicity had the most striking effect
on the extent to which up-gradient gene flow contributed to ad-
aptation; moderate- and high-polygenicity scenarios generally had
much lower up-gradient gene flow than did low-polygenicity sce-
narios, with low-redundancy, independent-linkage scenarios being
the main exception (Figure 2). Moderate-polygenicity scenarios
actually showed the lowest overall increase in up-gradient gene
flow, though differences between moderate- and high-redundancy

scenarios were minor.

3.2 | Linkage and polygenicity

As expected, our null simulations showed essentially no changes
in mean fitness (Figure 2) or population size (Figure S2), aside
from small modeling artifacts present in both the null and climate
change scenarios, and the phenotypic distributions for the popu-
lations in these simulations were stable through time (Figure S4).
The results of our climate change simulations exhibited decreases
in population size and mean fitness that are the expected results
of increasing maladaptation (Aitken & Whitlock, 2013). They also
revealed environment-tracking phenotypic shifts (Figure 4) in line
with expectations (Figure 1), though these shifts lagged behind en-
vironmental change to some extent, producing suboptimal mean
fitness at the end of the climate change period. Across scenarios,
the demographic responses to climate change, in terms of popu-
lation size and fitness, increased with increasing linkage (change
in fitness: ,=0.0018 +0.0001, p<1x 107%%; change in population
size: 4,=33.330+1.287, p<1x 107%%). We also found greater mal-
adaptation, defined as the area in two-dimensional trait space sep-
arating the central line of a population's post-change phenotypic
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FIGURE 4 Scatterplots of the observed versus expected phenotypic shift during the climate change period for all 18 of our simulated
scenarios. For each scenario, the left (“before”) scatterplot shows the distribution of phenotypes before climate change begins, and the
right (“after”) scatterplot shows how the distribution has shifted by the end of the climate change period. The trait adapted to the shifting
environmental gradient is distributed along the x-axis, with the trait adapted to the stable gradient on the y-axis. Each plot is an ensemble
of the results for all 100 replicates of each scenario. The size and opacity of each point represent the number of individuals exhibiting that
two-dimensional phenotype. The gridded arrangement of the points in each scatterplot is a function of the number of loci per trait, which
determines the set of possible phenotypes. Solid black lines delineate the shifts in the phenotypic distributions' central tendencies that are
expected to take place during the climate change period; dotted black lines depict the observed distributions' central tendencies; and red
wedges depict the differences between the expected and observed distributions (“phenotypic shortfall”).

distribution from the central line of the distribution that would op-
timally track the changing environment (Figure 4; Figure S4), asso-
ciated with increasing linkage (maladaptation: 5, =0.0038 + 0.0004,
p<1x107%).

The magnitude of demographic responses also showed a sig-
nal of an overall increase with increasing polygenicity (change
in fitness: f4,=0.0022+0.0001, p< 1x107'% change in pop-
ulation size: 4,=15.070+1.287, p<1x107'% maladaptation:
f#,=0.0097 £0.0004, p<1x107'%), although the trend was non-
monotonic and complex. Responses were smallest at moderate
polygenicity, more pronounced at low polygenicity, and highest at
high polygenicity and low redundancy (Figure 3; Figure S2). In fact,
under high polygenicity and low redundancy, populations declined
so strongly that adaptive capacity was effectively outstripped, and
the declines persisted throughout the climate change period, with
little indication of evolutionary rescue (i.e., stabilization and re-
bound) occurring until the post-change period (Figure 3; Figure S2).
The collapse of adaptive capacity in these scenarios is also visible
in the large areas of phenotypic-shift shortfall in Figure 4. The low-
redundancy, high-polygenicity, strong-linkage scenario had such low
adaptive capacity that mean fitness declined by 5.2% on average
(from 0.934 to 0.885), mean population size declined by 17.1% on
average (from 6326 to 5246 individuals), and the simulated popula-
tion ceased to occupy the rightmost, fastest-changing portion of the

landscape (Figure 4).

3.3 | Genotypic redundancy

Our high-redundancy scenarios showed consistently smaller demo-
graphic responses to climate change, less-prominent up-gradient
gene flow, and higher adaptive capacity than their low-redundancy
counterparts (change in fitness: 4=0.0040+0.0002, p<1x107"
change in population size: 4=39.060+2.101, p<1x107'% malad-
aptation: £=0.0098+0.0006, p<1><10'15), consistent with our
hypothesis that genotypic redundancy can facilitate adaptation to
shifting environmental gradients (Figure 2; Figure S2). This effect
was most pronounced in the high-polygenicity scenarios, which ex-
hibited much milder demographic decline under high redundancy
compared to low redundancy, despite still showing no evidence of
demographic rebound until after climate change (Figure 3). Indeed,
increased redundancy puts the demographic declines under these
scenarios on par with those of the low-polygenicity scenarios
(Figure 3; Figure S2).

4 | DISCUSSION

Current theoretical understanding of evolutionary responses to cli-
mate change largely derives from a simplified mechanistic model in
which adaptation is universally facilitated by up-gradient gene flow.
This model also serves as the inspiration for some climate-smart ap-
proaches to biodiversity management (e.g., assisted gene flow; Aitken
& Whitlock, 2013). However, adopting this model as the basis for
theoretical and mechanistic research risks overlooking the influence
of genomic architecture on multivariate adaptation to environmen-
tal change. Starting from a more realistic, multi-trait framework, our
simulations demonstrate that up-gradient gene flow does indeed occur
under climate change but that its contributions to local adaptation and
persistence may be constrained by polygenicity, genotypic redundancy,
and, to a lesser extent, linkage. Given the range of plausible genomic ar-
chitectures we simulate (Barghi et al., 2020; Bomblies & Peichel, 2022;
Boyle et al., 2017; Rockman, 2012; Savolainen et al., 2013; Sella &
Barton, 2019), these results raise the compelling possibility that up-
gradient gene flow, while unlikely to be entirely maladaptive, could play
a limited role in climate change adaptation in many systems. This may
be especially true in systems where climate-adapted traits have more
dispersed architectures—for example, architectures composed of many
genes of small effect (Yeaman, 2022). This poses an important question
for subsequent research: how often are the genomic architectures un-
derlying climate-adapted traits dispersed versus concentrated?

We also show that the genomic architecture of climate-adapted traits
can influence the nature and size of demographic responses to climate
change. Our results suggest that strong linkage between non-neutral
loci, especially under high polygenicity, can increase maladaptation and
demographic decline during climate change. In the most extreme case,
evolutionary rescue was absent; high polygenicity and low redundancy
combined to drive dramatic and persistent demographic declines and
even caused local extinction when linkage was strong. This was unex-
pected in light of previous work reporting that dispersed architectures
produce stable, resilient phenotypic clines despite transient genotypic
composition (Yeaman, 2015, 2022) and, thus, that species with such ar-
chitectures could exhibit rapid local adaptation (Aitken et al., 2008). We
did, nonetheless, expect evolutionary responses to climate change to be
slower in these scenarios, because natural selection is less effective on
smaller-effect alleles, gene flow may have more of a swamping effect
for these alleles, and high linkage leads to longer expected wait times for
the generation of novel, adaptive recombinant genotypes. We did not,
however, expect adaptive capacity to be completely outstripped. Yet,
it appears that the rate of environmental change simply exceeded the
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pace of adaptation. This is evidenced by the quick demographic rebound
that occurred in the “post-change” periods (Figure 3). This rebound was
likely driven by the same evolutionary dynamics that occur during evo-
lutionary rescue, but in these extreme scenarios, it only emerged once
environmental change had ceased.

Remarkably, we also observed higher maladaptation and larger
demographic declines in our low-polygenicity scenarios with fewer,
larger-effect alleles. Demographic decline was least pronounced
in our moderate-polygenicity models. This contrasts with previous
work finding that adaptation to a gradient is more effective under
either concentrated or dispersed genomic architectures (Yeaman &
Whitlock, 2011). This disagreement may be attributable to the dif-
ference in timeframes between adaptation to a univariate environ-
mental gradient and adaptation to a decoupled, multivariate gradient.
Adaptation to a single, static gradient can proceed gradually, which
may favor large-effect alleles or allele clusters over longer time scales,
once they have arisen by mutation, recombination, gene flow, or a
combination thereof (Yeaman, 2015, 2022). Longer-term, gradual
change scenarios may also favor dispersed architectures in temporally
fluctuating environments (Blrger & Gimelfarb, 2002; Kondrashov
& Yampolsky, 1996; Yeaman, 2022; Yeaman & Whitlock, 2011).
However, the sudden onset of persistent environmental change in
a population that is already locally adapted triggers a “race against
time,” and genomic architectures with optimal adaptive capacity may
be the “middle ground” architectures that comprise freely recombin-
ing loci with small enough effect sizes to avoid large declines in fitness
from migration load but with large enough effect sizes to allow for
effective natural selection and to avoid the long wait times necessary
for recombination to cluster many adaptive loci into larger-effect hap-
lotypes. This presents the surprising possibility that an “evolutionary
trade-off” may exist, such that mid-effect-size alleles may confer max-
imal adaptive capacity to environmental change.

The fact that high genotypic redundancy reduces demographic de-
cline, across all scenarios, contributes to the growing recognition of the
importance of redundancy as a driver of evolutionary outcomes for poly-
genic traits (Laruson et al., 2020; Yeaman, 2022). This also presents a pos-
sible mechanism to be explored in real-world populations living at colder
range edges. Much like the local populations in the rightmost region of
our low-redundancy scenarios, these local populations could already be
at the edge of the phenotypic space defined by their standing genetic
variation. In this case, segregating redundancy (Laruson et al., 2020) and,
thus, adaptive capacity would be low, so vulnerability to local extinction
would be substantial. However, species whose cold range edges are
predominantly determined by geographic barriers or biotic interactions
rather than climate limits (Thomas, 2010) could feature local populations
more similar to our high-redundancy scenarios; segregating redundancy
would be higher, so selection would be balancing rather than directional,
and adaptive capacity would be substantial. Hence, in situ adaptation
would be a substantial contributor to adaptive capacity in these scenar-
ios—an implication supported by the fact that we observed reduced up-
gradient gene flow across all high-redundancy scenarios.

Our findings also contribute new insight to the theoretical un-
derstanding of local adaptation with recombination. Recombination

is generally regarded as disadvantageous in situations of clinal adap-
tation with gene flow, because it disrupts the association between
adaptive loci underlying a single trait (Tigano & Friesen, 2016).
Unstable environments experiencing stochastic temporal fluctua-
tions are considered a major exception (Tigano & Friesen, 2016), but
our results suggest that this may also extend to environments un-
dergoing monotonic change such as that caused by climate change.
In fact, recombination may be advantageous under these condi-
tions, particularly when species have distinct traits simultaneously
adapted to decoupled environmental gradients. This advantage
likely arises because recombination allows for more effective in situ
adaptation by shifting allelic covariance, despite still disrupting the
associations between loci that would otherwise allow for the de-
velopment of larger-effect gene clusters. This suggests that in situ
shifts in allelic covariance provide an alternative to adaptive gene
flow as a mechanism for evolutionary rescue, especially in multi-trait
systems where gene flow can be adaptive for shifting climatic gra-
dients but maladaptive with respect to other, decoupled gradients.
A major challenge in simulation-based research is the complexity of
the high-dimensional parameter space that could be explored. Useful
and informative studies can be constructed by focusing on a small set
of key parameters while holding others at reasonable values, as we
have done here. This nonetheless leaves unexplored a number of sec-
ondary parameters that can have a non-negligible influence over the
complex ecological phenomena of interest. In the case of evolutionary
responses to climate change, this provides various areas for future re-
search. These include population size, a major determinant of the rela-
tive strengths of drift and natural selection (Murray et al., 2017) and of
the wait time to emergence of recombinant haplotypes (Christiansen
et al., 1998); movement behavior, a key factor influencing migration-
selection dynamics (Barton, 1999; Haldane, 1930; Wright, 1931);
allelic effect size distributions (Orr, 1998), which are omitted here in
favor of a single, fixed effect size; and the spatiotemporal structure of
the environment, including gradient geometries, slopes, orientations,
and rates of change (Benes & Bracken, 2020). Additionally, important
and conservation-relevant insight could emerge from the integration
of other dimensions of climate change ecology, including range shifts
(Weiss-Lehman & Shaw, 2020), plasticity (Chevin et al., 2010), and
range-wide variation in population densities (Aitken & Whitlock, 2013).
Finally, more complex evolutionary scenarios could also be explored,
including pleiotropy and epistasis (Thompson, 2020), hybridization
(Turbek & Taylor, 2023), life history variation, and even multiple traits
that differ in the complexity of their genomic architectures—a realistic
scenario that could exhibit different evolutionary outcomes than the

ones we describe here.

5 | CONCLUSIONS

Adaptive gene flow and in situ adaptation are two of the main
processes by which species may persist under climate change.
Evaluating the conditions under which they are likely to contrib-
ute to species persistence is essential for better understanding
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microevolutionary responses to climate change and for inform-
ing management efforts. Our simulations show that genomic ar-
chitecture can play an important, but largely overlooked, role
in driving evolutionary outcomes. This includes determining the
relative effectiveness of these two processes, the magnitude
and persistence of maladaptation, and the likelihood of con-
comitant demographic decline or evolutionary rescue. These
findings highlight the importance of considering multivariate en-
vironmental gradients for climate change research, and suggest
that the genomic architecture underlying traits adapted to those
gradients has direct consequences for how species respond to
environmental change.
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Fig. S1. Plots of the number of genotypes (y-axis) that yield each phenotypic value (x-axis). Polygenicities corresponding to low redundancy scenarios are plotted and labeled
in light teal and those corresponding to high redundancy scenarios in dark teal. The minimum and maximum environmental values on the landscape are represented by dashed

vertical lines. Plots follow the visualization of genotypic redundancy in Laruson et al. 2020 (? ), Box 1, Figure I.
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Table S1.

Predicted main vs. null upslope gene flow (and 95% confidence intervals) for all 18 scenarios.

genicity

linkage

redundancy

predicted gene flow (+ 95% C.l.)

N2 ON-—-O0OMN-2ON-=-O0ON-—=ON—=O

2

OO0 O =+ =42 =2 MNMMNMNODODO = = =DNDN

O O OO0 OO0 OO = = = =4 4 a4 a4

0.04916 £ 0.00211
0.03496 £ 0.00177
0.02076 £ 0.00211
0.03622 £+ 0.00177
0.02202 £ 0.00134
0.00782 £ 0.00177
0.02328 £ 0.00211
0.00908 £ 0.00177
—0.00512 £ 0.00211
0.06470 £+ 0.00211
0.05050 £ 0.00177
0.03630 £ 0.00211
0.05176 £ 0.00177
0.03756 £ 0.00134
0.02336 £ 0.00177
0.03883 £ 0.00211
0.02463 £ 0.00177
0.01042 £ 0.00211
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Code Sample S1: Template parameters file
# template_params.py

import numpy as np
import pandas as pd
import os

# set up the landscape

b4 = np.vstack([np.linspace(1, 0, 50) for _ in range(50)])

af = np.vstack([np.linspace(1, 0.5, 50) for _ in range(50)])
stable = np.vstack([np.linspace(1, 0, 50) for _ in range(50)])
K = np.ones((50,50))

# NOTE: time_steps.CSV USED TO SET CLIMATE CHANGE

# TO START AT TIME STEP 2500
# AND FINISH AT TIME STEP 2750
if os.getcwd().split('/')[1] == 'home':

steps = pd.read_csv(('/home/deth/Desktop/CAL/research/projects/sim/"
'ch2/climate_change_adaptation_and_genomic_arch/sim/"'
'time_steps.CSV'))
else:
steps = pd.read_csv(('/global/scratch/users/drewhart/"'
'ch2/climate_change_adaptation_and_genomic_arch/sim/"'
'time_steps.CSV'))
# set time when environmental change begins
change_T = int(steps[steps['name']=="'start']['num'].values[0])
# set time when environmental change ends
T = int(steps[steps['name']=='end']['num'].values[0])

# show the landscape, for debugging, if requested
debug_landscape = False
if debug_landscape:

import matplotlib.pyplot as plt

fig = plt.figure()
axl = fig.add_subplot(221)
im1 = ax1.imshow(b4, cmap='spring', vmin=0, vmax=1)
plt.colorbar(iml)
ax3 = fig.add_subplot(223)
im3 = ax3.imshow(af, cmap='spring', vmin=0, vmax=1)
plt.colorbar(im3)
ax2 = fig.add_subplot(222)
im2 = ax2.imshow(stable, cmap='winter', vmin=0, vmax=1)
plt.colorbar(im2)
ax4 = fig.add_subplot(224)
im4 = ax4.imshow(K, cmap='autumn', vmin=0, vmax=1)
plt.colorbar(im4)
plt.show()

# This is a parameters file generated by Geonomics
# (by the gnx.make_parameters_file() function).

I B
# 00 i H : #

# GGGGG :EEEE: 00000 NN NN 00000 SSSSS #
# GG EE 00 00 NNN NN 00 00 MM MM II cC SS #
# GG EE 00 00 NN N NN 00 00 MMM MMM II cC SSSSSS #
# GG GGG EEEE 00 00 NN NNN 00 00 MM M MM II cC SS #
# GG G EE 00 00 NN NN 00 00 MM MM II cC SSS #

# GGGGG :EEEE: 00000 NN NN 00000 MM MM IIIIII CCCCC SSSSS #

# Dorniiiio Triiiiiiinon - L #
#: oo I #
# S
# -
# #
# - #

params = {



g g ]
HHAHHHHHFH AR AR AR

#### LANDSCAPE #H#H#
HHEHHHHEH T
'landscape': {

HHEH AR
#it## main #i#H#
e e e e e ae g
'main': {
#x,y (a.k.a. j,1i) dimensions of the Landscape
'dim': (50,50),
#x,y resolution of the Landscape
'res': (1,1),
#x,y coords of upper-left corner of the Landscape
'ulc': (0,0),
#projection of the Landscape
'prj': None,

1 3 1

}, # <END> 'main
bbb A
sHsmmsiss st

#it## layers #H#t##

ITRTRTR TR TN TN TR TN IR TR TN TR

'layers': {
#layer name (LAYER NAMES MUST BE UNIQUE!)
'shift': {
Hmm o m i m e e e e #
#--- layer num. 0: init parameters ---#
e T #

#initiating parameters for this layer
'init': {

#parameters for a 'defined'-type Layer

'defined': {
#raster to use for the Layer
'rast': b4,
#point coordinates
'pts': None,
#point values
'vals': None,

#interpolation method {None, 'linear', 'cubic',
#'nearest'}

'interp_method': None,

}, # <END> 'defined'

}, # <END> 'init'

Fhmm e e e e #

#--- layer num. 0: change parameters ---#

Hmm i m i m e e e e #
#landscape-change events for this Layer
'change': {

0: {

#array or file for final raster of event, or directory
#o0f files for each stepwise change in event

'change_rast': af,
#starting timestep of event
'start_t': change_T,
#ending timestep of event

'end_t': T,

#number of stepwise changes in event
'n_steps': T-change_T,

}, # <END> event 0
}, # <END> 'change'

}, # <END> layer num. 0O



#layer name (LAYER NAMES MUST BE UNIQUE!)

'stable': {
Hmm o m i m e e e e #
#--- layer num. 1: init parameters ---#
e T #

#initiating parameters for this layer
'init': {

#parameters for a 'defined'-type Layer

'defined': {
#raster to use for the Layer
'rast': stable,
#point coordinates
'pts': None,
#point values
'vals': None,

#interpolation method {None, 'linear',

#'nearest'}
'interp_method': None,

}, # <END> 'defined'
}, # <END> 'init'

}, # <END> layer num. 1

#layer name (LAYER NAMES MUST BE UNIQUE!)

IKI: {
Hm e m e #
#--- layer num. 2: init parameters ---#
R TR #

#initiating parameters for this layer
"init': {

#parameters for a 'defined'-type Layer

'defined': {
#raster to use for the Layer
'rast': K,
#point coordinates
'pts': None,
#point values
'vals': None,

#interpolation method {None, 'linear',

#'nearest'}
'interp_method': None,

}, # <END> 'defined'
}, # <END> 'init'
}, # <END> layer num. 2

#layer name (LAYER NAMES MUST BE UNIQUE!)
'move': {

R TR #
#--- layer num. 2: init parameters ---#
B m o mm e e #

#initiating parameters for this layer
"init': {
#parameters for a 'defined'-type Layer

'defined': {
#raster to use for the Layer

'cubic',

'cubic',

'rast': np.ones((50,50)),



#point coordinates

'pts': None,
#point values
'vals': None,

#interpolation method {None, 'linear', 'cubic',
#'nearest'}

'interp_method': None,

}, # <END> 'defined'

}, # <END> 'init'

#### NOTE: Individual Layers' sections can be copy-and-pasted (and

#### assigned distinct keys and names), to create additional Layers.

} # <END> 'layers'

}, # <END> 'landscape'

g ]
HHAHHHHHFH AR AR AR AR

#### COMMUNITY #H#H#
HHEHHHHEH T
'comm': {

'species': {

#species name (SPECIES NAMES MUST BE UNIQUE!)

'spp_0': {
e #
#--- spp num. O: init parameters ---#
R E TR #
"init': {
#starting number of individs
"N': 1000,
#carrying-capacity Layer name
'K_layer': 'K',
#multiplicative factor for carrying-capacity layer
'K_factor': 2.5,
}, # <END> 'init'
L #
#--- spp num. O: mating parameters ---#
R #
'mating'’ :
#age(s) at sexual maturity (if tuple, female first)
'repro_age': o,
#whether to assign sexes
'sex': False,
#ratio of males to females
'sex_ratio': 1/1,
#whether P(birth) should be weighted by parental dist
'dist_weighted_birth': False,
#intrinsic growth rate
'R": 0.5,
#intrinsic birth rate (MUST BE 0<=b<=1)
'b': 0.5,
#expectation of distr of n offspring per mating pair
'n_births_distr_lambda"': 1,
#whether n births should be fixed at n_births_dist_lambda
'n_births_fixed': True,
#radius of mate-search area
'mating_radius': 5

’
#whether individs should choose nearest neighs as mates
'choose_nearest_mate': False,



#whether mate-choice should be inverse distance-weighted
'inverse_dist_mating': False,
}, # <END> 'mating'

e #
#--- spp num. O: mortality parameters ---#
L R =
'mortality’  {
#maximum age
'max_age': None,
#min P(death) (MUST BE 0<=d_min<=1)
'd_min': o,
#max P(death) (MUST BE 0<=d_max<=1
'd_max': 1,
#width of window used to estimate local pop density
'density_grid_window_width': None,
}, # <END> 'mortality'
L T =
#--- spp num. O: movement parameters ---#
R L L #

'movement': {

#whether or not the species is mobile
'move': True,
#mode of distr of movement direction
'direction_distr_mu': o,
#concentration of distr of movement direction
'direction_distr_kappa': o,
#mean of distr of movement distance
'movement_distance_distr_paraml': 0.25,
#variance of distr of movement distance
'movement_distance_distr_param2': 0.5,

#movement distance distr to use ('lognormal','levy', 'wald')
'movement_distance_distr': 'wald',
#mean of distr of dispersal distance
'dispersal_distance_distr_paraml': 0.5,
#variance of distr of dispersal distance
'dispersal_distance_distr_param2': 0.5,

#dispersal distance distr to use ('lognormal', 'levy', 'wald')
'dispersal_distance_distr': 'wald',
3, # <END> 'movement'

'gen_arch': {
#file defining custom genomic arch
'gen_arch_file': None,
#num of loci
L' 1000,
#value to use for fixed starting allele freqs (None to draw)
'start_p_fixed': 0.5,
#whether to start neutral locus freqs at 0
'start_neut_zero': True,
#genome-wide per-base neutral mut rate (0 to disable)
'mu_neut': o,
#genome-wide per-base deleterious mut rate (O to disable)
'mu_delet': 0,
#shape of distr of deleterious effect sizes
'delet_alpha_distr_shape': 0.2,
#scale of distr of deleterious effect sizes
'delet_alpha_distr_scale': 0.2,
#NOTE: MAIN SCRIPT OVERRIDES THE FOLLOWING TWO PARAMS
#TO SET RECOMBINATION RATES TO A FIXED VALUE OF
#0.5, 0.05, OR 0.005 FOR INDEPENDENT,
#WEAK, OR STRONG LINKAGE VALUES
#alpha of distr of recomb rates
'r_distr_alpha': 1000,
#beta of distr of recomb rates
'r_distr_beta': 1e3,



#whether loci should be dominant (for allele '1')

'dom': False,
#whether to allow pleiotropy
'pleiotropy': False,
#custom fn for drawing recomb rates
'recomb_rate_custom_fn': None,
#number of recomb paths to hold in memory
'n_recomb_paths_mem': int(1e4),
#total number of recomb paths to simulate
'n_recomb_paths_tot"': int(1e5),

#num of crossing-over events (i.e. recombs) to simulate
'n_recomb_sims': 100_000,
#whether to generate recombination paths at each timestep
'allow_ad_hoc_recomb': False,
#whether to save mutation logs
'mut_log': False,

#whether to jitter recomb bps, to correctly track num_trees
'jitter_breakpoints': False,
#whether to use tskit (to record full spatial pedigree)
'use_tskit': True,
#time step interval for simplication of tskit tables
'tskit_simp_interval': 100,

"traits': {
L e #
#---trait 0 parameters ---#
R R E TR #
#trait name (TRAIT NAMES MUST BE UNIQUE!)
"trait_0': {
#trait-selection Layer name
'layer': 'shift',
#polygenic selection coefficient
'phi': 1,

#NOTE: MAIN SCRIPT CHANGES NEXT PARAM TO 4, 20, OR 100
#FOR LOW-REDUNDANCY SCENARIOS OF DIFF. POLYGENICITY,
#0R 8, 40, OR 200 FOR HIGH-REDUNDANCY SCENARIOS
#number of loci underlying trait

'n_loci': 50,

#mutation rate at loci underlying trait
'mu': o,

#mean of distr of effect sizes
'alpha_distr_mu' : o,

#variance of distr of effect size
'alpha_distr_sigma': o,

#max allowed magnitude for an alpha value
'max_alpha_mag': None,

#curvature of fitness function

'gamma’': 1,

#whether the trait is universally advantageous
'univ_adv': False

}, # <END> trait 0

L #
#---trait 1 parameters ---#
R R #
#trait name (TRAIT NAMES MUST BE UNIQUE!)
"trait_1': {
#trait-selection Layer name
'layer': 'stable’,
#polygenic selection coefficient
'phi': 1,

#NOTE: MAIN SCRIPT CHANGES NEXT PARAM TO 4, 20, OR 100
#FOR LOW-REDUNDANCY SCENARIOS OF DIFF. POLYGENICITY,
#OR 8, 40, OR 200 FOR HIGH-REDUNDANCY SCENARIOS
#number of loci underlying trait

'n_loci': 50,

#mutation rate at loci underlying trait
'mu': 0,

#mean of distr of effect sizes
'alpha_distr_mu' : o,

#variance of distr of effect size
'alpha_distr_sigma': o,

#max allowed magnitude for an alpha value



'max_alpha_mag': None,
#curvature of fitness function

'gamma ' : 1,
#whether the trait is universally advantageous
'univ_adv': False

}, # <END> trait 1

#### NOTE: Individual Traits' sections can be copy-and-pasted (and
#### assigned distinct keys and names), to create additional Traits.

}, # <END> 'traits'

}, # <END> 'gen_arch'

}, # <END> spp num. O

#### NOTE: individual Species' sections can be copy-and-pasted (and
#### assigned distinct keys and names), to create additional Species.

}, # <END> 'species'

}, # <END> 'comm'
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#### MODEL ##H#H#
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'model': {
# NOTE: NEXT PARAM OVERRIDDEN BY MAIN SCRIPT
#total Model runtime (in timesteps)

'T': 100000,

#min burn-in runtime (in timesteps)
"burn_T': 30,

#seed number

"num' : None,

'its': {
#num iterations
'n_its': 1,
#whether to randomize Landscape each iteration
'rand_landscape': False,
#whether to randomize Community each iteration
'rand_comm"': False,

#whether to randomize GenomicArchitectures each iteration

'rand_genarch': True,
#whether to burn in each iteration
'repeat_burn': False,

}, # <END> 'iterations'
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#### data-collection parameters ####

'data': {
'sampling': {

#sampling scheme {'all', 'random', 'point', 'transect'}
'scheme': 'all',
#sample size at each point, for point & transect sampling
'n': 1000,
#coords of collection points, for point sampling
'points': None,

#coords of transect endpoints, for transect sampling
'transect_endpoints': None,



#num points along transect, for transect sampling

'n_transect_points': None,
#collection radius around points, for point & transect sampling
'radius': None,
#when to collect data
'when': [change_T-1,
int((change_T-1+T-1)/2),
T'l]r
#whether to save current Layers when data is collected
'include_landscape': False,
#whether to include fixed loci in VCF files
'include_fixed_sites': True,
r
'format': {
#format for genetic data {'vcf',6K 'fasta'}
'gen_format': ['vef'],
#format for vector geodata {'csv', 'shapefile', 'geojson'}
'geo_vect_format': 'csv',
#format for raster geodata {'geotiff',6 'txt'}
'geo_rast_format"': 'geotiff’,
#format for files containing non-neutral loci
'nonneut_loc_format': 'csv',

}
}, #<END> 'data'
} # <END> 'model'

} # <END> params



