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Global phenology mapsreveal the drivers
and effects of seasonal asynchrony
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Terrestrial plant communities show great variation in their annual rhythms of growth,
or seasonal phenology"?. The geographical patterns resulting from this variation,
known asland surface phenology (LSP)?, contain valuable information for the study of
ecosystem function*®, plant ecophysiology®8, landscape ecology®® and evolutionary
biogeography" . Yet globally consistent LSP mapping has been hampered by methods
that struggle to represent the full range of seasonal phenologies occurring across
terrestrial biomes™, especially the subtle and complex phenologies of many arid and
tropical ecosystems"*'®, Here, using a data-driven analysis of satellite imagery to map
LSP worldwide, we provide insights into Earth’s phenological diversity, documenting

bothintercontinental convergence between similar climates and regional
heterogeneity associated with topoclimate, ecohydrology and vegetation structure.
We then map spatial phenological asynchrony and the modes of asynchronous
seasonality that control it, identifying hotspots of asynchrony in tropical mountains
and Mediterranean climate regions and reporting evidence for the hypothesis that
climatically similar sites exhibit greater phenological asynchrony within the tropics.
Finally, we find that our global LSP map predicts complex geographical discontinuities
in flowering phenology, genetic divergence and even harvest seasonality across a
range of taxa, establishing remote sensing as a crucial tool for understanding the
ecological and evolutionary consequences of allochrony by allopatry.

Plant communities vary widely in their annual rhythms of growth, the
collectiveresult of the adaptation of plant life cycles to the vast range
of terrestrial environments**>Y, The spatiotemporal patterns that
this creates, known as land surface phenology (LSP), conveyrich eco-
physiologicalinformation about the relationship between bioclimate
and plant function"®”" and about the modification of that relationship
by human land use*'®. Robust characterization of these patterns is
therefore a critical step in understanding the seasonal dynamics of
Earth’s terrestrial ecosystems and the constraints that those dynam-
icsimpose on native species and human activity. Yet the tendency of
phenological research to focus on scalar phenometrics that assume
simple annual growth cycles and discrete growing seasons (for exam-
ple, start and end of season)™ has limited our ability to understand
global LSP diversity, especially in arid and tropical biomes charac-
terized by subtly varying and multimodal phenologies that remain
poorly understood*”™*, The historical lack of robust remote-sensing
proxies of photosynthesis has compounded this limitation, relegat-
ing most previous LSP analyses to traditional vegetation indices that
have limited sensitivity to seasonal phenology in evergreen ecosys-
tems®"”, New remote sensingindices such as near-infrared reflectance
of vegetation (NIR,)* and sun-induced (or solar-induced) chlorophyll
fluorescence (SIF)* serve as stronger and less biome-sensitive predic-
tors of seasonal variation in plant productivity®'®. Season-agnostic
analysis of these proxies of ecosystem function can offer globally
consistent insights into LSP.

Asabiological signal of the predominant environmental seasonality
controlling the phenologies of many species**?, the geography of LSP
offers valuable information for landscape ecology and evolutionary
biogeography. Spatial variation in seasonal timing can desynchronize
phenologies and therefore decouple ecological dynamics between
populations™. This spatial phenological asynchrony can cause allochro-
nicreproductive isolation”’—aphenomenon that we term ‘allochrony
by allopatry’—which canaccelerate genetic divergence and, according
to theasynchrony of seasons hypothesis (ASH)'"?, even facilitate specia-
tion®. The ASH posits that this is most commonin the tropics: whereas
the phenological cues commonly used by high-latitude species (for
example, temperature and daylength seasonality) are synchronized
across broad geographical areas, the cues thought to be used by many
low-latitude species (for example, seasonal availability of water and
cloud-attenuated sunlight>'°1¢172%) can diverge over short geographical
distances*'*%28 Crucially, the topoclimatic phenomena purported to
drivethis divergence could even cause seasonal cycles to be out of sync
between places with similar climatological averages, such that nearby
sites with a similar habitat could exhibit distinct seasonal patterns in
potential phenological controls such as temperature, precipitation,
cloud immersion or solar radiation®%, a pattern we hereafter refer
to as isoclimatic phenological asynchrony. This would increase the
likelihood that spatial phenological asynchrony could occur between
populations of tropical species despite their characteristically narrow
climatic niches?, strengthening the case for allochrony by allopatry
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as a contributor to latitudinal and altitudinal gradients in genetic*®
and species diversity®. However, observational and genetic evidence
for the ASH is scant and mixed'*32%, global terrestrial patterns of
asynchronous seasonality and phenological asynchrony are mostly
unknown'>*, and the geography, drivers and implications of allochrony
by allopatry remain largely unexplored.

We present an innovative analytical framework that uses recent
advances in remote sensing to provide a global analysis of the diver-
sity and spatial asynchrony of LSP (Extended Data Fig. 1a). First, using
harmonic regression to model LSP as a location’s long-term average
annual phenology (hereafter, its phenocycle; Extended Data Fig. 2),
we estimated a global LSP map from a rigorously quality-filtered
(Extended Data Fig. 1b), 20-year (2001 through 2020) time series of
0.05° space-based NIR, imagery** (this and all other input datasets are
summarized in Supplementary Table 1). We evaluated this LSP map by
comparisontoidentically modelled results derived from space-based
SIFimagery®, ground-based NDVIimagery®® and flux-tower estimates
of ecosystem productivity®, then used multivariate analysis to visualize
the global spatial and temporal diversity of LSP, identifying patterns of
regional complexity and intercontinental convergence that we inter-
pretinlight of previousresearch on phenology, climate and land cover.
Next, we calculated aglobal map of spatial asynchrony of LSP, character-
ized its hotspots and regional drivers, and examined the evidence for
alatitudinal gradient inisoclimatic phenological asynchrony. Finally,
usingavariety of species datasets, we found that our LSP map predicts
allochrony by allopatry and its consequent genetic divergence across
arange of taxa inhabiting asynchrony hotspots.

Phenological diversity

Our global LSP map (Fig.1) shows strong overall performance worldwide
(Extended Data Fig. 3) and reveals ecologically interpretable patterns
fromregional tointercontinental scales,demonstrating the broad value
ofaglobally consistent, multivariate approach to LSP analysis. When the
global set of annual phenocycles in this map is rescaled to acommon
amplitude and animated, complex patterns of spatially variable timing
become starkly apparent (Supplementary Video 1). Decomposition of
these patterns into empirical orthogonal functions (EOF) shows that
Earth’s diverse LSP regimes are well explained by afew modes of spati-
otemporal variation. The predominant mode (63.89% of total variation)
largely reflects the north-south hemispheric summer-winter dipole,
butembedded withinitis a clear signal of intercontinental phenological
convergence across the five global Mediterranean climate regions and
portions of their neighbouring drylands as well as asimilarly timed signal
in coastal wet-forest regionsin Brazil andin Somalia, Kenya and Tanza-
nia (Extended Data Fig. 4a). The most marked non-hemispheric signals
embeddedin modes two (19.17%), three (8.56%) and four (8.39%) reflect
the remaining regions comprising the global tropical and subtropical
monsoon systems* and a number of agricultural land-use patterns.
Rendering the top three modes as ared-green-blue (RGB) compos-
ite (Fig. 1and Extended Data Fig. 4b,c) reveals the bulk of global LSP
diversity (>90% total variability) in great clarity. At the broadest scales,
intercontinental convergenceisinstantly visible as a pattern of similar
LSP colour gradients occurring within similar geographical and climatic
contexts. One notable example is the convergence between Earth’s
more strongly seasonal Mediterranean-climate regions (California,
coastal Chile and the Mediterranean basin)* where woodland and
other non-forest areas exhibit phenological maximainlate winter and
spring (forexample, clusters 8 and 9 in Fig. 1), while the predominantly
montane forestsinthoseregions display delayed phenologies that are
roughly synchronous with the spring-summer green-up across most
temperate, high-latitude regions (such as clusters1-3in Fig.1), afind-
ing that corroborates and extends worldwide the phenological ‘double
peak’ described previously in California*®. Numerous other examples of
intercontinental convergence also emerge, including between the more

134 | Nature | Vol 645 | 4 September 2025

climatically moderate Mediterranean climate regions of South Africa
and southern and southwestern Australia® (Extended Data Fig. 5a,b),
betweenthe eastern rainforests of Madagascar and northern Queens-
land, Australia (Extended Data Fig. 5¢,d) and between some regions
with similar agricultural crops (for example, maize-growing regions
in the USA and Italy; Extended Data Fig. 5e,f).

At smaller scales, our methodology reveals complex patterns of
regional phenological heterogeneity that suggest possible environ-
mental controls on LSP (Fig.1a-d).In some regions, climatic gradients
arethelikely predominant drivers—for example, in southwestern North
America, our LSP map reveals distinct winter/spring LSP peaks in coastal
habitats and in high desert that contrast with summer/fall peaks in
inland and low-desert habitats (Fig. 1a), mirroring the orographically
forced divisionbetween winter-monsoon (thatis, Mediterranean) and
summer-monsoon climates®?***, However, the LSP patterns in other
regions suggest additional drivers—for example, in the Basinand Range
region (USA), community composition appears to be a key factor*,
with desert regions with a greater abundance of invasive cheatgrass
(colourlinFig.1b;20.97% annual vegetation, according to recent esti-
mates*’) showing an earlier spring onset than less-invaded regions
(colour 2; 9.39% annual composition; Tukey’s honest significant dif-
ference, P<0.001). South Florida (USA) presents an example of LSP
patterns that are probably driven by community composition that is
tied to topohydrology (Fig. 1c). The distinctions between Everglades
sawgrass marsh (showing a phenological peak during the winter dry
season, when water levels are lowest), the wooded wetland region to the
northand west (showinga quick spring peak that may reflect deciduous
cypressleaf-out), and areas of drained, upland and mangrove vegetation
(showing broader peaks during the summer wet season), are consistent
withregional vegetation maps**and CO, exchange studies***¢. Finally, in
regionsinwhichwater and light are the major controls on plantgrowth®,
stark LSP discontinuities may indicate differences in ecohydrological
dynamics, and therefore in water-balance strategies, between differ-
ent vegetation structural types. The double peak of Mediterranean
forest and non-forest habitats is one example of this (Extended Data
Fig.2a). The Amazon may be another. We observe bimodal phenologies
in forests that contrast sharply with unimodal phenologies in natural
and anthropogenic non-forest (Fig. 1d) and in some riparian zones
(Extended DataFig.2e). Previous research suggests that these patterns
couldreflect closer phenological tracking of optimal light availability
inforests of the northern and central Amazon basin, where water stress
isaless-frequent constraint on growth®® compared within seasonally
drought-stressed non-forest"*® and seasonally inundated floodplain
forests®. However, seasonality of tropical plant productivity reflects
a complex integration of environmental controls that is still poorly
understood®, so it remains unclear how generally tropical phenologies
track light except when constrained by water, as theory suggests®”.

We have thoroughly evaluated the performance of the LSP-fitting
procedure used to produce these results. We compared our map against
apriori expectations, both regionally (for example, comparing to the
double peak previously described in California*; Extended Data Fig. 2a)
andglobally (for example, comparing the unimodality/bimodality in our
LSP map (Extended DataFig. 6a) to that described in previous work*). We
alsocompared the full LSP map to a4.3-year time series ofindependent
SIF datafrom Orbiting Carbon Observatory-2* (Extended DataFig. 6b;
pixel-wise median R* between fitted phenologies, 0.855), after assess-
ing the seasonality of interpolated portions of that SIF dataset against
asecond SIF dataset (Extended Data Fig. 6¢). We then compared the
LSP map toidentically modelled phenocycles derived from two global
time-series datasets: the normalized difference vegetationindex (NDVI)
from ground-based phenology cameras in the PhenoCam network®
and gross primary productivity (GPP) from eddy covariance flux tow-
ers in the FLUXNET2015 network®. Our LSP map shows strong overall
agreement with the seasonal signals in both datasets (Supplementary
Tables 2 and 3), although with noticeably lower average agreement in
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Fig.1| Global LSP mappingrevealsintercontinental convergence and
complexregional gradients. The map was coloured by plotting the top three
modes of the EOF analysis asan RGB composite. These modes, which explain
more than 90% of the phenocycle variationin our global NIR, time series, were
transformed across the intertropical convergence zone (ITCZ; dotted line
straddling the equator) before composition, to facilitate interhemispheric
comparison. Theline plots (top right) depict annual phenocycles (January-
January north of the ITCZ; July-July to the south) for nine clusters derived from
the global set of fitted phenocycles, coloured by each cluster’s median valuein
the colour composite. Regional maps (a-d) are paired with phenocycle plots
coloured by regionally constrained clustering. Complex gradients appear to
reflect patterns of topoclimate, ecohydrology and vegetation structure.a, In
Californiaand Arizona, USA, and Sonora and the Baja California peninsula,
Mexico, astrong gradient aligns with the orographically driven division

semi-arid and seasonally dry biomes thanin other ecosystems (Extended
DataFig. 6d,e). We attribute this both to the high interannual variability
of productivity in these biomes*® (especially Australia®; Extended Data
Fig. 2b), which decreases the likelihood that the temporal patterns of
shorter NDVI and GPP time series are characteristic of the long-term
average phenologies that we modelled (Extended DataFig. 6d,e), and to
the phenologically divergent land-cover mosaics that can occur there®*°,
which decrease thelikelihood that the annual phenology of the vegeta-
tion within a camera’s field of view or a tower’s footprint matches the
spatially averaged annual phenology of the mixture of vegetation within
acoarser remote sensing pixel.

Phenological asynchrony

After excluding agricultural pixels to minimize anthropogenic influ-
ence’, we estimated each pixel’s spatial phenological asynchrony as the
spatial rate of phenological divergence within its surroundings—that

9

(I

L e e e
Jan Apr Jul Oct Jan

Ju Oct Jan  Apr  Jul

o1 @1
o2 m2
o3 m3

Jan‘ ‘A‘pr‘ ‘J‘ul‘ ‘O‘ct‘ ‘Jan Jan‘ ‘A‘pr‘ ‘J‘ul ‘ ‘O‘ct‘ ‘Jan
betweenMediterranean winter-monsoon regions (colours1and 2) and summer-
monsoonregions (3and 4)*. b, Inthe Great Basin, USA, we recover asignificant
signal of the accelerated spring growth of cheatgrass (1)** relative to sagebrush
(2) and montane (3) vegetation (one-way analysis of variance (ANOVA),
P<5x1073%* with clusters of n=4,629,904 and 4,891 pixels; two-tailed Tukey’s
honestsignificant difference, P=5.71x10™2inboth cases). ¢, InSouth Florida,
USA, we observe starkly contrasting phenologies between Everglades sawgrass
marsh (1), wooded wetland (2) and upland, drained and mangrove ecosystems
(3).d, Inthe Amazon Deltaregion, Brazil, we observe unimodal phenologies in
non-forest areas (1) that are closely juxtaposed with bimodal phenologiesin
forest (2and 3), whether non-forestis naturally occurring (for example, the
northwestern patchis Guianansavanna) or anthropogenic (for example, the
southernband lies within the arc of deforestation).

is, the slope of the relationship between the geographical and pheno-
logical distances between the pixel and all its neighbours (Extended
Data Fig. 7a). The phenological asynchrony maps resulting from this
calculation show that high asynchrony occurs in regions in which the
predominant constraints on plant growth are expected to be availability
of light and water, rather than temperature*, perhaps reflecting the
fact that the seasonal timing of these factors is more susceptible to
topographic modulation and that their ecophysiologicalimportance
variesmore as afunction of vegetation structure (Fig. 2a). Within that
overarching pattern, we find phenological asynchrony hotspots con-
centrated not only in tropical montane regions, as posited by the ASH,
but also insubtropical Mediterranean and semi-arid climate zones—a
finding that is consistent across neighbourhood radii (50,100 and
150 km) both within the NIR, and SIF datasets (Extended Data Fig. 7b)
and between them (Extended Data Fig. 8).

To understand what might generate this pattern, we used a
random-forest modelling framework to predict LSP asynchrony as a
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Fig.2|Hotspots of phenological asynchrony are driven by asynchronous
seasonality of precipitation and minimum temperature.a, Aglobal
phenological asynchrony map shows the result of applying our asynchrony
metric tothe MODIS NIR,-derived LSP map, usinga100 km neighbourhood.
Brighter coloursindicate higher spatial asynchrony of LSP.b, The predominance
ofthe two mostimportantdrivers of LSP asynchrony, PA (blue) and MTA (pink),
varies regionally. Areas that grade towards black show more balanced influence
ofthese two covariates. Predominance was calculated as the normalized
difference of pixel-wise absolute SHAP values and plotted within phenological
asynchrony hotspots (pixels > 85th percentile). The top two covariates were
chosenbecause their SHAP importance consistently exceeds that of other
covariates across models (Extended Data Fig. 9). Min., minimum.

function of its potential environmental drivers. We calculated asyn-
chrony maps for the seasonality of minimum and maximum tempera-
ture, precipitation, climate water deficit and cloud cover, all of which
revealed strongly structured geographical patterns that were similarly
insensitive to neighbourhood size (Extended Data Fig. 7b). We also
included four other potential drivers: ameasure of topographic com-
plexity, to allow for the latitude-topography interactions expected
under the ASH'%; an index of the spatial variability in vegetation struc-
ture, to allow the model to reflect LSP divergence between distinct
vegetation types*’; and indices of the frequency of fire and of the
extent of land use and non-fire-driven land cover change, to account
for potential human contribution to LSP asynchrony patterns. We
constructed a random forest for each combination of neighbour-
hood radius, LSP dataset, and inclusion or exclusion of geographi-
cal coordinates (to check the sensitivity to the explicit estimation of
spatial process). Despite the local-scale neighbourhood sensitivity
of our asynchrony metric (Extended Data Fig. 7b), we found that our
overarching modelling results were largely insensitive to all three of
these factors (Extended Data Fig. 9a) and showed a strong overall
ability to predict patterns of phenological asynchrony (R*= 0.56 for
the 100 km, NIR-based, coordinate-included model; Extended Data
Fig. 9a,b shows R*values for all models and a map of standardized
prediction errors).

Two forms of asynchronous seasonality consistently emerged as the
primary drivers of LSP asynchrony: precipitation asynchrony (PA) and
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minimum temperature asynchrony (MTA). To understand the regional
variability of drivers, we calculated the local influence map of each
covariate using shapley additive explanations (SHAP) values (Extended
Data Fig. 9¢), then summarized the maps of the two primary drivers,
within LSP asynchrony hotspots (pixels > 85th percentile), as anormal-
ized difference of absolute SHAP values (Fig. 2b). These results suggest
that a handful of explanatory mechanisms underlie the major facets of
the global pattern of LSP asynchrony. First, PAis the clear driver of asyn-
chrony across the divisions between Mediterranean winter-monsoon
regions and neighbouring continental or summer-monsoon climates®
(Fig.1aand Extended Data Fig. 2b), whereas PA and MTA are similarly
importantdrivers within Mediterranean climate regions. Second, the
drivers of tropical montane LSP asynchrony appear to vary regionally,
from PA (for example, the central tropical Andes, the Brazilian Mata
Atlantica, the Afromontane, eastern Madagascar and the Australian
wet tropics) to MTA (for example, the northern and southern tropi-
cal Andes, the Guiana Shield) to codominance in some regions (for
example, southern Central America). The unexpected importance
of MTA in tropical montane regions may indicate that temperature
seasonality exerts phenological control within certain biomes, such as
athigher elevations', or even that it has abroader but little-recognized
role in the control of tropical tree phenologies'®**°, but it may also
simply indicate omitted variables or complex interactions that are
notresolved by our analyses (for example, the interaction of variable
insolation with variable thickness of cloud cover?). Finally, LSP asyn-
chrony is low across temperate continental climates, where harsh
winters synchronize phenologies* even when precipitation regimes
arespatially variable*® and PA is high (Extended Data Fig. 7b), and also
across many tropical and subtropical regions of low topographic relief,
where phenologies are broadly synchronized by year-round warmth
and by spatially expansive precipitation regimes unaffected by oro-
graphic phenomena’. Amazonian forest-savanna ecotones—includ-
ing in the northwest (that is, the Llanos), the north (that is, Guianan
savanna) and the south and southeast (that is, the Cerrado, and the
convolved patternofland clearancein the arc of deforestation)—are a
major exception that may relate to the divergence between light-driven
and water-driven phenologies*®".

The logic of the ASH suggests that the phenological asynchrony of
tropical montaneregions could be caused by spatially variable timing
of the topoclimatic phenomena that control seasonal fluctuations in
precipitation, cloudiness and available solar radiation—an idea sup-
ported by many detailed, regional climatologies® 25, Thisimplies that
tropical phenological asynchrony could occur not only due to spatial
differencesinclimatebutalso due to spatial differencesin the seasonal
timing of similar climates. We refer to such a pattern as isoclimatic
phenological asynchrony, and we test for it by examining whether
the strength of the relationship between climatic and phenological
distances between sites (,), assessed within global high-asynchrony
regions, is positively correlated with absolute latitude. Despite the
spatial variability in this relationship (Fig. 3a), we find strong overall
evidence for a latitudinal gradient (Fig. 3b,c; P < 0.001). This lends
support to the potential evolutionary importance of allochrony by
allopatry:itsuggests that allopatric populations of tropical species may
experience stronger average allochronicisolation than allopatric popu-
lations outside the tropics, owing to the higher likelihood that asyn-
chronous seasonality occurs between sites within even narrow climatic
niches (for example, between similar montane rainforests with seasonal
precipitation patterns that are similarin shape but are temporally out
of phase). Ifits physiographic basis does indeed persist over long time-
scales', then this phenomenon should be expected to drive genetic
differentiation and, therefore, to serve asamechanism contributing to
latitudinal and altitudinal gradients of genetic® and species diversity™,
as proposed by the ASH™. This could be compounded by other factors
believed to make tropical montane species more prone to allopat-
ricisolation and divergence: characteristically narrow topoclimatic
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Fig.3|Climatically similar sites exhibit greater phenological divergence
within the tropics. We fit MMRR modelsin high-asynchrony regions to
determine the strength of the relationship between phenological and climatic
differences (as estimated by the coefficient 8.). a, This map depicts the average
value of 8., based onan ensemble of regional MMRR models predicting
phenological distance as a function of climatic difference and geographical
distance.b, The ensemble results (one point per high-asynchrony region;

distributions®, fragmented and isolated climates® and low population
densities’".

Allochrony by allopatry

Theevolutionary implications of our results depend on the ability of LSP
toserveasacorrelate for the climatic and resource seasonality patterns
that control the reproductive cycles of a wide range of species™*>172,
In this capacity, remote sensing of proxies for organismal phenology
could have an underappreciated role inimproving our understanding of
spatiotemporal evolutionary dynamics. Using a variety of species-level
datasets, we demonstrate that our LSP map s, indeed, areliable predic-
tor of phenological and genetic signals of reproductive allochrony by
allopatry across disparate taxa.

First, using timestamped flower observations fromiNaturalist™, we
found that our LSP dataset predicts allochrony by allopatry across a
wide range of native plant species. To focus on species most likely to
exhibit the sharp phenological discontinuities expected under the
ASH-as opposed to the gradual spatial change inbloom date that might
occur alongaltitudinal or latitudinal gradients—we derived a subset of
taxa with significantly non-unimodal histograms of range-wide flower-
ing dates (859; 11.8%) from the full number of usable iNaturalist taxa
(7,250). As expected, these non-unimodal taxa concentrate in regions
where temperature seasonality is not the predominant control on plant
growth?, allowing life histories to spread across much of the calendar
year (Extended Data Fig.10). We dropped 49 taxa that had insufficient
data for model fitting, as well as 196 taxa with extremely broad latitu-
dinal distributions that would produce significant but uninteresting
results reflecting only the opposite seasonalities of the northern and
southern hemispheres. We then used multiple matrix regression with
randomization (MMRR)** models to test the remaining 614 taxa for a
signal of allochrony by allopatry: asignificant correlation between flow-
ering date distances and the phenological distances calculated from our
LSP map, independent of geographical and environmental distances.
Despite the noise inherent in using opportunistic observation dates
to represent flowering periods, we found that almost one in five taxa
(106;17.3%) shows evidence of geographical flowering-time variation
thatis explained by LSP asynchrony (43, or 7.0%, after false-discovery
rate correction; Supplementary Table 4). Many of these taxa exhibit
patterns of allochrony by allopatry that show marked agreement with
stark discontinuities in our LSP map (Fig. 4a).
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n=429regions) reveal asignificant, positive relationship between the
mean . and the mean absolute latitude (ordinary least squares regression
slope=0.00612, P=9.405 x107°), indicating alatitudinal gradientin
isoclimatic phenological asynchrony. ¢, A two-tailed Monte Carlo analysis
oftheensembleresultsindicates that the slope of the latitudinal gradient is
significantly larger in magnitude than slopes derived from1,000 permuted
datasets (Ppe;my < 0.001). Freq., frequency.

Next, using data collected from the few published studies of the
ASH, we found that our LSP map not only recapitulates the genetic
divergence previously attributed to phenological asynchrony in an
eastern Brazilian amphibian but also yields convergent results in a
sympatric bird. First, we reanalysed data from the only genomic ASH
study of which we are aware”, which reported isolation by PAinatoad
(Rhinella granulosa) found in eastern Brazil—a region in which we
also document strong, precipitation-driven LSP asynchrony (Fig. 2b).
Substituting our LSP data for their PA data recovers anidentical pat-
tern of genetic isolation by asynchrony (MMRR LSP-distance coef-
ficient = 0.332, P< 0.001), visible in the tight agreement between
clustering of the sampling locations by their genetic data and cluster-
ing by their NIR, phenocycles (Fig.4b). Next, using an equivalent analy-
sis, we found similar results (MMRR LSP-distance coefficient = 0.665,
P <0.001) and symmetric geographical structurein the only sympatric
speciesincluded among other available ASH genetic studies, the lesser
woodcreeper, Xiphorhynchus fuscus (Furnariidae)® (Fig. 4b). This sug-
gests that our remote sensing approach can detect little-recognized
biogeographical patterns that influence evolutionary dynamics across
disparate taxa.

Finally, we found evidence that allochrony by allopatry canalso have
practical and economic ramifications in other domains, such as agri-
culture. For example, in contrast to most coffee-producing nations,
Colombiais known to have two harvest seasons, fully six months out
of sync: some regions harvest from September to December, others
from March toJune, and still others have a principal harvest in one of
these seasons and a minor harvest during the other**. A map of clas-
sified harvest seasonalities produced by the National Federation of
Coffee Growers of Colombia (Fedecafé) reveals acomplex geographi-
cal pattern, including not only latitudinal structure (the September-
December seasonality is predominantly northern), but also orographic
structure—that same September-December seasonality extends all the
way south alongthe easternslope of the Andes. Using sampling points
digitized across a previously published version of the Fedecafé map**,
we show that spatial variability in our LSP dataset mirrors the spatial
variability in fruiting phenology documented by Fedecafé (Fig. 4c) and
that clustering of our LSP dataset significantly matches the official
harvest season categories (P < 0.001). The pronounced phenological
discontinuity across the easternmost range of the Andes causes some
sites that are separated by aslittle as 60 kmlinear distance tobe as out
of sync as if they were separated by 60 latitudinal degrees (Extended
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spatial variationin our LSP map. Maps of observation locations and line plots of
the phenocycles at those locations are both coloured by k-means clustering of
the phenocycles (k=2),and the hash marks on theline plotsindicate the day of
year of each iNaturalist flowering observation. b, Data from R. granulosa® and
sympatric X. fuscus® show congruent results, attributing genetic divergence
toallochrony by allopatry across aregion of precipitation-driven phenological
asynchrony in eastern Brazil. Sampling-site maps and line plots of the
phenocycles at those sites, coloured by k-means clustering (k = 2) of genetic
data (left), display close agreement with results coloured by phenocycle

DataFig.2c). This pattern may reflect transmontane differencesin the
seasonal patterns of precipitation and cloud-attenuated sunlight that
result from the orographic blocking of prevailing winds*”?, a topocli-
matic phenomenonthat could have abroadly importantrole intropical
montane biogeography.

Conclusions

Annual rhythms of climate and resource availability control the phenolo-
gies of many plant and animal taxa. These rhythms can differ across
geographical space, sometimes substantially. Where this happens,
allochrony by allopatry can occur because ecological processes in dif-
ferent locations can be decoupled not only by the physical distance
between them but also by the temporal displacement between their
asynchronous seasonal and phenological cycles. Our work demon-
strates that globally consistent, biome-agnostic remote sensing of
LSP, using a minimal modelling framework that avoids the complica-
tions arising from concern with discrete growing seasons, thresholded
phenometrics and spatially variable amplitudes, can provide a crucial
tool for studying this phenomenon. This innovation provides impor-
tant insights into the global diversity and intricate heterogeneity of
terrestrial phenologies—particularly in the tropics, where most LSP
algorithms suffer from a tacit ‘temperate phenological paradigm’5'¢
that contributes to a persistent phenological knowledge gap'®>**. Our
approach could also deepeninsights into the phenological shifts hap-
pening under climate change™", including phenological anomalies
caused by increasingly common extreme weather. Modelling LSPas a
long-termaverage phenocycle has the inherent limitation of excluding
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clustering (right). ¢, Coffee (Coffea arabica) harvest seasons, mapped by
Fedecafé**, exhibitacomplex patternof allochrony by allopatry. Sampling
points, coloured by Fedecafé harvest season categories, are mapped over an
RGB composite of LSP variability, derived from EOFs (left). This harvest season
mapping shows broad agreement with geographical variationin our fitted
phenocycles (right). Each harvest season category has a colour-matched plot,
depicting the medianlineand 10th and 90th percentile ribbons across all
sampling points and underlined by thick barsindicating the official harvest
season months. Speciesimages were derived from iNaturalist photos taken by
M. Groeneveld (M. scabra; CCBY 4.0),]). Ponder (S. parviflorum; CC BY 4.0) and
M. Podas (X. fuscus; CCBY-SA 4.0); adapted fromref. 64 (CC BY 4.0); or taken by
M. Burrows (C. arabica).

these deviations, but also the benefit of providing amultivariate baseline
for measuring them, which could help to identify changing patterns of
landscape phenology and allochrony by allopatry that can have cas-
cading effects on species interactions and resource availability'*>**,
animal movement®, and ecosystem fluxes and phenology-climate
feedbacks*’.

Our study also offers perspectives and insights across awide range
of domains. For example, although we have focused on terrestrial eco-
systems, allochrony by allopatry may have important roles in marine
and freshwater ecosystems too. The interactions of currents, strati-
fication, nutrient gradients and atmospheric and coastal influences
could create three-dimensional patterns of allochrony by allopatry in
marine environments®, and spatial variation in the seasonal patterns of
temperature, hydroclimate and nutrientinputs could cause allochrony
by allopatry across the complex geographies of lakes and drainage
networks*. Our work not only adds to agrowing body of evidence that
allochrony by allopatry can cause reproductive isolation and genetic
divergence®>>*but also suggests avenues for understanding the key
life history and landscape parameters that potentiate this. Species
with lower dispersal ability, such as the amphibian and understory
specialist bird that we analysed here, may have phenologies that are
moretightly controlled by local resource availability and may therefore
be predisposed®”. Comparisons between regions could reveal whether
divergenceisfacilitated by isoclimatic phenological asynchrony, which
should increase the likelihood of allochrony by allopatry within even
narrow climatic niches, or by reduced interannual phenological vari-
ability, which should limit long-term gene flow leakage and therefore
strengthen reproductive isolation.
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Finally, it remains to be determined whether genetic divergence under
allochrony by allopatry facilitates speciation and therefore contributes
to broad-scale patterns of species diversity, as originally posited by the
ASH. Phenological prezygoticisolationis widely recognized asa mecha-
nismofreproductive isolation?*?, and its instrumental role in some of
the best-studied examples of purported sympatric speciation*** raises
the question of whether ‘allochrony by parapatry’ might beinvolvedin
the speciation of endemicsrestricted to habitats where our map often
shows stark phenological discontinuities across ecotones—including
Amazonian floodplains®®, mangroves® and other wetlands. Comprehen-
sive phylogeographic work willbe needed to determine general patterns,
butthestrong concordance of hotspots of phenological asynchrony with
hotspots of continental biodiversity and endemism*¢*%, including not
only tropical montane regions but also Mediterranean and semi-arid
floristic regions, is highly consistent with the notion of allochrony by
allopatry as animportant macroevolutionary mechanism.
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Methods

Overview of software, data and workflow

We conducted our LSP mapping workflow using Google Earth Engine
(GEE) (v.0.1.404 or later)® and performed additional analyses using
Python® with a set of core scientific packages (numpy®’, shapely®®,
pandas®, geopandas’®, rasterio’, xarray’?, rasterstats’>, dask™, scipy”,
scikit-learn’®, statsmodels” and matplotlib™®). All of the datasets used
inourstudy are summarized in Supplementary Table 1, and our entire
mapping workflow is summarized in Extended Data Fig. 1a.

LSP datasets

We used GEE to model LSP in two independent time series of remote
sensingindices that are strong correlates of seasonal variability in plant
productivity—NIR,, an index of the fraction of incident near-infrared
light thatis reflected by vegetation®®, and SIF, anindex of the quantity
of incident photons that are absorbed by chlorophyll and re-emitted
as fluorescence®. We used a 20-year time series of MODIS-derived NIR,
data(daily datafrom2001t02020, subsampled to every 4 days for com-
putational tractability) as our main dataset (the full workflow diagram s
showninExtended Data Fig.1a). Following best practices for estimation
of patterns at the annual timescale, we chose the MCD43A4 v061 data-
set*,a16-day temporal composite” of nadir bidirectional reflectance
distribution function (BRDF)-adjusted reflectance®’. We used the ver-
sion of these data that is publicly available in the GEE data catalogue.
We did not carry out topographic correction because the scale of our
analysis (0.05°; -5.5 km) is sufficiently coarse that spatial averaging
is expected to remove topographic bias®>®'. We used only pixels with
quality values of <3 (that is, pixels for which full or magnitude-based
BRDF inversions were successfully fitted®) for both the red and NIR
bands (bands 1and 2), aggregated to our target analytical resolution
of 0.05° (hereafter, target resolution) using the arithmetic mean. We
calculated NIR,, as described previously?, as the product of the NDVI
and total NIR reflectance. NIR, values of <0, assumed to be invalid®°,
occurred predominantly in high-albedo scenes (for example, treeless
snow cover; Extended Data Fig. 2d), where productivity is assumed to
be minimal, so they were clamped to the minimum positive NIR, value
observed during a pixel’s 20-year time series.

To evaluate our NIRy maps, we ran some of our main analyses identi-
callybut usingaglobal, gridded SIF dataset™. Thisis aroughly 4.3-year
(September 2014 to January 2019), 0.05°, spatially contiguous time
series dataset, interpolated by artificial neural network (ANN) from
the spatially discontiguous SIF data measured along Orbiting Carbon
Observatory 2 (OCO-2) orbital swaths. Rigorous internal and external
validation of this dataset showed that it accurately captured the global
patterns present in the original OCO-2 retrievals and that it explained
81% of the variation in contemporaneous chlorophyll fluorescence
imaging spectrometer aerial measurements taken beneath OCO-2
orbits and 72% of the variation in measurements not beneath orbits®.
We downloaded this dataset from the Distributed Active Archive Center
for Biogeochemical Dynamics® then ingested it into GEE.

Given that the SIF dataset interpolates across orbital gaps but the
paper describing the dataset did not explicitly validate the seasonal
phenological patterns of the interpolated data, we assessed the
observed seasonality intheinterpolated, orbital-gap dataagainst the
observed seasonality in another, coarser-resolution SIF dataset col-
lected by the TROPOspheric Monitoring Instrument (TROPOMI)84%,
Todoso, we extracted SIF time series from the ANN-interpolated data-
set at a sample of random points drawn within OCO-2 orbital gaps in
threetropical realms (the Neotropics, tropical Africa, and Indo-Pacific
and tropical Australia; Extended Data Fig. 6¢) then compared those
values to contemporaneous time series extracted from the TROPOMI
SIF data. We used tropical regions for this assessment because their
lack of a pronounced thermal winter creates the greatest possibility
that seasonality there exhibits spatially varying patterns that are not

accurately recovered by spatial interpolation from orbital-swath data. If
theinterpolated dataset adequately captures the true seasonal patterns
of SIF within OCO-2 orbital gaps thenits time series should explain the
bulk of the variationin the TROPOMI time series, and it does (R? = 0.89;
Extended Data Fig. 6¢).

Datafiltering

To exclude locations where our harmonic regression-based LSP map-
ping methodology (see the next section) would return inaccurate
results, we used an extensive filtering pipeline that removed invalid
land cover, pixels with multiple types of data deficiency and pixels with
statistically insignificant LSP regressions. The pixels removed from
analysis by each of the filtering steps described below are mapped and
summarized in Extended Data Fig. 1b.

For land-cover filtering, we used the GEE data catalog asset for
MCD12C1.061%¢, a MODIS product estimating annual, global land
cover at our target resolution. We used the Annual International
Geosphere-Biosphere Programme’s (IGBP) classification scheme (land
covertypel). Toavoid low-quality data originating from non-target land
cover, we excluded data from all pixels with >10% invalid land cover—
including urban and built-up land, permanent snow and ice, barren land
and water bodies (categories13,15,16 and 0)—for all years within which
that classification was assigned. Next, we retained pixels with any other
land-cover classifications provided that they never switched between
agricultural (categories 12 or14) and non-agricultural (categories1to11),
toavoid fitting phenocycles to the noise resulting from abrupt changes
between natural phenologies and those that are deliberately altered
by human management (for example, irrigation). We retained pix-
els where land-cover assignment changed across the time series but
was either always agricultural or always non-agricultural because:
(1) spurious signals of change between natural land-cover types are
commoninregions with large, climatically driveninterannual variation
inplant productivity or where the actualland cover straddles categori-
calboundaries and challenges classification algorithms (for example,
woodland, savanna and semi-arid biomes); (2) actual land-use and
land-cover change (LULCC) onthe ground is often too subtle toregister
achange in remotely sensed land-cover maps (for example, selective
logging), even whenitregisters aclear signalin continuous metrics such
as NIR, (Extended Data Fig. 2a); and (3) we only expected other forms
of LULCC (for example, deforestation) to affect our modelling results
inregions where different land-cover types exhibit different natural
phenologies in response to the same broad bioclimatic controls, in
which case pixels subject to LULCC should generate model fits that
are intermediate to the phenocycles typical of the before and after
land-cover types, introducing some noise into our map but neither
preventinginterpretation of its overarching patterns nor invalidating
significant statistical results.

While the LSP of agricultural regions is of interest in many contexts,
anthropogenic LSP patterns caused by irrigation and other intensive
land management practices’ could confound our phenological asyn-
chrony analyses, which focus on the climatic drivers and evolution-
ary implications of longstanding, naturally occurring LSP gradients.
Because of this, we used a stricter masking procedure for all datasets
used to calculate LSP asynchrony maps and to run asynchrony-related
analyses, omitting data fromall agricultural pixels (IGBP categories 12
and 14; Extended Data Fig. 1b).

To preclude poorly fitted LSP regressions that could cause spurious
results, we removed any target-resolution pixels with data that did
not satisfy a set of strict non-missingness criteria. First, we removed
any pixels whose LSP time series had >50% missing data, asimple step
to remove sites with data dropout because of substantial cloud con-
tamination or MODIS quality control problems. Next, we removed
any pixels without atleast10% monthly mean data availability inevery
monthoftheyear. Finally, owing toa tendency for the harmonic regres-
sion procedure (described below) to interpolate spurious second LSP
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peaksinto extended, seasonally repeating periods of missing data (for
example, during high-latitude winters, when Terraand Aqua overpasses
occur outside daylight hours for numerous weeks), we removed any
pixels for which the binary time series of data availability (O = missing
data, 1=data available) had a Pielou’s evenness® of less than 0.8. We
calculated Pielou’'sevenness,) = H'/H'.,,, using H' (Shannon’s diversity
index®®) calculated with 12 values, each value being a monthly average
proportion of non-missing 4-day-interval data over the 20-year NIRy
time series. Manual inspection of fitted phenological patterns after
applyingthis series of filtering steps confirmed successful removal of
locations that would otherwise produce spurious results. These last
two steps removed all locations north of roughly 60° (Extended Data
Fig. 1b) because the lack of winter daylight during satellite overpass
creates long, seasonally repeating stretches of unavailable data. This
is also a known complication for other remote-sensing products (for
example, MOD44B.061 Vegetation Continuous Fields®), butit does not
affect our major findings because the same orbital physics that causes
this issue also produces strong, zonally consistent temperature and
photoperiod control over annual phenologies at these latitudes and,
therefore, limited potential for phenological asynchrony.

Finally, we used the harmonic regression procedure described below
not only to calculate characteristic annual LSP patterns but also to
estimate the significance of those patterns and filter out pixels with
insignificant regression results, using aMonte Carlo framework. Todo
this, for each pixel in our global NIR, dataset, we randomly permuted
the original LSP time-series image stack, scrambling any true seasonal
signal, then ran the harmonic regression and stored an image of the R?
values atall pixels. Next, we calculated from all of the stored R images
asingle summary image of empirical Pvaluesindicating, for each pixel,
the proportion of permutations for which the permuted time series’ R
values exceeded the R? value from the unpermuted harmonic regres-
sion. We ran this harmonic regression permutation test using 20 permu-
tations at every pixel globally (because of computational limitations),
then filtered out any pixels with an empirical P > 0.05.

Modelling of LSP

We used harmonic regression to model the long-term average annual
LSP pattern (that is, phenocycle) of every pixel in the global, filtered
NIR, and SIF datasets. In our model each pixel’s full time series is pre-
dicted as afunction of time as:

Yy :ﬁo + ﬁtt"'ﬁlsm(tann) +ﬁzcos(tann) +ﬁ35in(tsem) +ﬁ4cos(tsem) tE,

where yis either the SIF or NIR, time series, ¢ is the linear time compo-
nent (days fromthe start of the time series), and ¢,,,, and ¢,.,,, are circular
time expressed in annual (ann) and semiannual (sem) frequencies (that
is, the day of year expressed inradians, where 2t radians corresponds to
thelast day of theyear fort,,,and to the middle and last days of the year
for ¢,.,). We then retained all of the resulting coefficient maps except
B, (the trend), yielding a stack of five coefficient maps that represents
the detrended, long-term, characteristic annual LSP pattern at each
pixel globally.

We chose harmonic regression because it is a simple, widely used
and clearly interpretable approach to time-series analysis®®, and
because it would enable us to characterize the long-term average
annual behaviour at all terrestrial locations. Our regression formu-
lation is algebraically equivalent to detrending the full 20-year time
series, then running a Fourier transform that includes both annual
and semiannual frequency components®. We designed a number of
the data-filtering approaches described above to ensure against the
spuriousinterpolationinto seasonally repeating data gaps that could
otherwise be caused by this method. We chose to include both the
annual and semiannual frequenciesin the harmonicregression to strike
abalance between model complexity and overfitting. We expected
that complex annual LSP patterns would occur in locations that have

bimodal seasonal precipitation patterns (that is, two rainy seasons)>®
and no winter freeze¥. Indeed, preliminary analysis revealed numer-
ousregions with stronger bimodal than unimodal annual LSP patterns
(that s, regions containing many pixels whose R* values were higher
in semiannual-only harmonic regression models than in annual-only
models). The linear combination of annual and semiannual harmonic
regression components is complex enough to represent annual LSP
curves thatare unimodal, evenly bimodal (two equal peaks and troughs)
or unevenly bimodal (featuring major and minor peaks and troughs),
but not more complex, and therefore avoids overfitting by excluding
unfounded higher frequencies®.

While frequency-specific phase and amplitude estimates could be
recovered from the fitted coefficients of our models, their compara-
tive interpretation across such a wide range of phenological patterns
would be difficult. Thus, for alldownstream analysis and visualization,
we instead use Euclidean distances and multivariate statistics calcu-
lated directly on the fitted phenocycles, which can be calculated as
the multiplication of a pixel’s fitted harmonic regression coefficients
with thel-year matrix of daily time values expressedin linear time and
inannual and semi-annual cyclical time. Extended Data Fig. 2a-d pairs
multivariate visualization (methods described below) with demonstra-
tions of the phenocycle-fitting procedure in various test regions, and
Extended DataFig. 2e shows asimilar visualization screenshotted from
the GEE app that we created for public exploration of our results (the
link to whichis provided within the GitHub repository for this project;
https://github.com/erthward/phen_asynch, https://doi.org/10.5281/
zenodo.15671259)%.

Evaluation of LSP mapping

We first evaluated the annual NIR, LSP map by calculating and inspect-
ing a map of R? values between the fitted NIR, and SIF phenocycles at
all pixels (Extended Data Fig. 6b). We also checked the distribution of
unimodal and bimodal phenologies against prior studies. To do this,
we min-max scaled each pixel’s phenocycle to the [0, 1] interval and
rotated it to start at its minimum value (to avoid problems arising
from phenocycle peaks that straddle the start of the calendar year).
We then extracted the heights of each phenocycle’s peaks, using the
‘find_peaks’ function in the ‘signal’ module of the Python package
scipy (v.1.13.0)”, and used the absolute difference of those heights
as anindicator of where a pixel lies on a spectrum between perfectly
bimodal (0: indicating two peaks of equal height) and unimodal
(1: assigned to phenologies having only a single peak). We mapped this
index (Extended DataFig. 6a), then visually compared it to previously
published depictions of the global distribution of regions with one
versus two growing seasons (see figure 3 of ref. 4).

We also evaluated the fitted phenocycles for both LSP datasets
(NIRy, SIF) by comparison with average phenocycles fitted identically
to time series of PhenoCam?® NDVIand FLUXNET2015*”*° GPP. For the
PhenoCam analysis, we used a combination of the R” package pheno-
camapi (v.0.1.5)°* and custom Python code to download all available
(as of 5March 2025) 3-day summary NDVI datasets from all cameras
and regions of interest (ROIs; masked areas of uniform vegetation
within a camera’s field of view, which are used to generate separate
time series datasets). We used NDVI because its phenological signal,
which candiverge fromthat of the green chromatic coordinatein some
systems®, provides a better comparator to our NDVI-derived NIR,
data. We used the 3-day summaries because they have reduced noise,
and we analysed the 75th-percentile NDVIsummary values to strike a
reasonable trade-off between the tendency of higher-percentile values
to be less noisy under variable lighting conditions and the risk that
very high percentiles can cause outlier influence®”. We dropped any
camerasites that PhenoCamreports as belonging to any of the invalid
IGBP land cover classes that we filtered out of our LSP analysis (urban
and built-up land, permanent snow and ice, barren land and water
bodies) or as being agricultural (because agricultural management
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could cause an entirely different phenology within a camera’s field
of view than the spatially averaged phenological signal reflected in
our LSPmap), leaving atotal of 368 camerasites eligible for analysis.
Before fitting a harmonicregression for each site, we removed outliers
fromeach of the site’s ROl datasets (using the outlier flag provided by
PhenoCam), then combined all datasets by averaging each day’s values
across allROIs to approximate the integrated land cover signal in our
LSP dataset at that site. We then used the same harmonic regression
modelusedinthe LSP-fitting procedure described above to calculate
a set of five coefficients describing the detrended, average annual
NDVI phenology for a site, and from those coefficients performed
matrix multiplication to recover the fitted characteristicannual NDVI
phenocycle for each site. Finally, for each site, we calculated the R*
values between the site’s characteristicannual NDVI phenocycle and
the LSP phenocycle corresponding to the site (that s, the pixel where
the camerais located or, if that pixel is masked in our LSP dataset,
the nearest valid pixel within a two-pixel-wide box that surrounds
it). We summarized this evaluation procedure across all camerasites
by producing, for each LSP dataset: (1) a scatter plot of the LSP-NDVI
R?values plotted on the Whittaker biomes®, to depict bioclimatic
patternsinevaluation performance; and (2) ascatterplot comparing
LSP-NDVIR?values to NDVItime series lengths, to depict the relation-
ship between camera data availability and evaluation performance
(Extended DataFig. 6d).

For the FLUXNET2015 comparison, we manually downloaded all
datasets available at the time of access (11 October 2021), then, as with
PhenoCam, dropped all flux tower sites reporting invalid and agricul-
tural land cover types, yielding 170 valid GPP datasets for analysis.
Before fitting aharmonic regression to each dataset, we first removed
all datapoints with a daily quality value of <0.7 (that is, with <70%
measured or good-quality gap-filled data contributing to their daily
aggregated values). We then used the same methods as described for
the PhenoCam NDVI comparison above to fit a harmonic regression,
predictacharacteristic annual time series, calculate R? values between
the annual time series and those from their closest available LSP pixels
(up to 2 pixels distant, otherwise a tower’s dataset was dropped) and
visualize the results (Extended Data Fig. 6e).

LSP visualization

To visualize the global variability of seasonal LSP that is presentin the
results of our harmonic regression, we used colour-composite visuali-
zation of the results of adimensionality-reduction analysis to produce
asingle global map. First, we used Python v.3.7 and the eofs package
(v.1.4.0)” to run EOF analysis on the covariance matrix of the global set
of NIR, phenocycles. We standardized each pixel’s phenocycle before
EOF calculation, ensuring that all pixels had equal variances of 1 and
therefore allowing the EOF analysis to highlight global variability in
the shape and timing of LSP patterns, our topic of interest, irrespective
of spatial variation in NIR, amplitude. Following common practice in
EOF analysis, we used the square root of the cosine of the latitude as
pixel area weights.

This calculation reduced the global diversity of average annual
LSP patterns to four EOFs. Finding that the first three EOFs cumula-
tively explain >90% of the variation in the dataset (91.62%; Extended
Data Fig. 4a), we min-max scaled them, then displayed them using
the RGB colour channels, visualizing the bulk majority of global LSP
variability within a single map. As they have embedded within them
both the unremarkable north-south hemispheric seasonality dipole
and hemisphere-independent patterns of interest (for example,
monsoon-driven LSP dynamics), we transformed the raw EOF maps
before RGB visualization to represent phenological variability in a
globally consistent colour scheme. To accomplish this, we used Web-
PlotDigitizer®® to digitize a geospatial vector file of the mean ITCZ in
bothboreal summer (June, July, August) and boreal winter (December,
January, February)®, then calculated asingle, annual mean ITCZ vector

by averaging the boreal summer and winter latitudes at evenly spaced
longitudes around the globe. Finally, for each EOF, we constructed a
synthetic, transformed map by calculating w x EOF + (1 -w) x (1- EOF),
where w varies from1in the northern hemisphere to O in the south-
ern hemisphere and transitions linearly from 1 to O within a 10° lati-
tudinal band surrounding the annual mean ITCZ. We chose to use
the ITCZ as the latitudinal boundary across which to transform the
EOF maps because it serves as a more natural meteorological Equa-
tor than does the geographical Equator”*, To help to interpret the
result of this visualization across the region surrounding the ITCZ
(Fig. 1), where some colour-warping occurs, we also generated RGB
composite maps using untransformed EOF maps and using EOF
maps transformed uniformly as 1 - EOF (Extended Data Fig. 4b,c). As
this transformation is used only for visual comparison across hemi-
spheres, ithasnoinfluence onany of the analytical results reportedin
our work.

To depict the characteristic phenocycles corresponding to the RGB
visualization, we use mini-batch k-means clustering (a version of the
standard k-means clustering algorithm that reduces computational
burden by using only a fixed-size random subsample of the full data-
set at each iteration) to cluster the standardized, fitted phenocycles
withinaregioninto kcolours, for k=1:12, then visually inspect ascree
plot to determine the optimal value of k. Using that chosen value, we
assign each pixel to one of k clusters, then plot each cluster centre
(after min—-max scaling) as its characteristic phenocycle, coloured
by the median RGB value across all pixels in the cluster. We used this
procedure to produce plotsinterpreting the predominant phenocycles
bothglobally (Fig.1(main)) and within various focal regions (Fig. 1a-d
and Extended Data Fig. 5). Before clustering the global map, we rotated
the fitted phenocycles of all pixels below the mean ITCZ by 182 days
(that is, half a year) to allow similar phenologies in the northern and
southern hemispheres to cluster together.

Discovering regional phenological variability in the Great Basin of
the United States that appeared to match the cheatgrass-invaded,
sagebrushand montane phenologies presented previously*, we used
ancillary data fromref. 43, aggregated to the target resolution of our
mabp, to calculate the average estimated percentage of annual herba-
ceous coverineachofthethree predominant clusters depictedinour
analysis (Fig. 1b). To support our interpretation of the three clusters
asannual-invaded communities, sagebrush and montane vegetation,
which we based on the differences in their estimated average annual
herbaceous cover and onavisual comparisontoref. 42, we used ANOVA
to test for a significance difference in the estimated percentage of
annual herbaceous cover across all three clusters, followed by a Tukey’s
honest significant difference test to test for significant pairwise differ-
ences between the clusters.

Tobetter highlight complex geographical patterns of spatially vari-
able LSP timing, we also produced a video (Supplementary Video 1)
animating the min-max scaled average NIR, phenocycle at each pixel.
Scaling each pixel’s phenocycle in this way forces all pixels to acom-
mon annual amplitude (from zero to one), ignoring spatial differences
inintra-annual variability caused by variable ecosystem productivity,
and thus highlighting spatial differences in the timing and rates of
change of LSP.

Calculation of phenological asynchrony
We exported the GEE results of our filtered harmonic regression as a
global set of tiled, multiband images of regression coefficients. We
used GEE’s TensorFlow output format and ‘kernelSize’ argument to
generatetilesthat overlapped their neighbours by 300 km (double the
largest neighbourhood size in our asynchrony calculations), to allow
asynchrony to be calculated independently and in parallel.

Foreach LSP dataset (NIRy, SIF), we calculated our asynchrony metric
pixel-wise, for all pixels with at least 30 available neighbours, using an
algorithmbased on Martin et al.?and depicted in Extended Data Fig. 7a:
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(1) Calculate the standardized phenocycle for a focal pixel.

(2) Identify all pixels of which the centrepoints are within the chosen
neighbourhood radius of the focal pixel (the neighbour pixels).

(3) For each neighbour pixel: (a) calculate its standardized pheno-
cycle; (b) calculate the 365-dimensional Euclidean phenological
distance between its phenocycle and the focal pixel’s phenocycle;
(c) calculateits geographical (geodesic) distance to the focal pixel.

(4) Calculate asynchrony as the slope of the regression of Euclidean
phenological neighbour distances on geographical neighbour dis-
tances (or as zero, wherever the slope has P> 0.01).

We used a regression approach to calculate the asynchrony metric
because it explicitly estimates the spatial rate of change in phenology,
and therefore well represents the spatial rate of change of seasonal
timing that is the subject of the ASH"2. We standardized phenocycles,
nullifying differences in amplitude, before calculating Euclidean dis-
tances between them, therefore preserving the timing differences
that weareinterestedin, even between similar-shape but out-of-phase
curves (a criterion not met by other common distance metrics, such
as dynamic time warping). We ran this calculationinJulia (v.1.4.1)* on
UC Berkeley’s Savio cluster, parallelized by tile, then mosaicked the
results into a global map (Fig. 2a).

We produced this global map for each of three neighbourhood radii
(50,100, and 150 km), enabling us to check the sensitivity of our maps
and our downstream results to this decision. The values of the resulting
maps, expressed as aspatial rate of change in the target variable’s units
(thatis, Aunit,,ge varianie/AM), scale arbitrarily with amap’s neighbour-
hood radius, but each map provides an internally valid quantitative
basis for assessing and comparing asynchrony between ssites. To assess
the overall level of agreement between the NIR, and SIF asynchrony
maps, despite the fine-scale noise expected in aneighbourhood metric,
we mapped and scatter plotted pixel-wise comparisons between the
two datasets for each of the three neighbourhood radii (Extended Data
Fig.8).Moreover, to evaluate the scale-sensitivity of the LSP asynchrony
maps (and of the asynchrony maps that we likewise calculated for the
climatic covariates described below), we assessed, for each mapped
variable, the R? values for all three pairwise interneighbourhood map
comparisons (Extended Data Fig. 7b).

To visually depict the asynchrony algorithm, we first simulated
harmonic-regression output for alow-asynchrony region as a five-layer
stack of coefficient values with rasters of low relative-magnitude Gauss-
iannoiseadded tothem and for ahigh-asynchrony region as afive-layer
stack of mean coefficient values with large relative-magnitude, spa-
tially autocorrelated noise added to them using neutral landscape
models generated using the nimpy Python package'®. We represented
each five-layer simulated map as a single-layer map by first calculat-
ing each pixel’s phenocycle from its simulated vector of harmonic
regression coefficients, then calculating the day of the year when its
simulated phenocycle attains its peak value. We used this summary
map, all pixels’ simulated phenocycles and the phenological-distance-
geographical-distance regression (the slope of which serves as the
asynchrony metric) to graphically depict the asynchrony calculation
procedure (Extended DataFig. 7a).

Phenological asynchrony model covariates

For the random-forest (RF) model exploring the potential drivers
of phenological asynchrony (see below), we produced rasters of physi-
ographic and environmental covariates using workflows combining
GEE, Julia, Python and GDAL (v.2.2.3)°’, First, we applied the same
harmonic regression and asynchrony-mapping pipeline described
above, skipping the masking steps that were specific to LSP data qual-
ity concerns, to the 64-year TerraClimate time series dataset'®in the
GEE catalogue, generating asynchrony maps for the climatic factors
potentially driving phenological asynchrony: monthly minimum
and maximum temperature, monthly precipitation and monthly

climate water deficit. We supplemented this with an equivalently
produced map of asynchrony in cloud cover, using cloud cover frac-
tions calculated from the internal cloud algorithm flag bit (bit 10
of the 1 km reflectance data QA band) of the MODIS Aqua and Terra
daily 1 kmglobal surface reflectance datasets (MYDO9GA.061'> and
MODO09GA.06"*) in the GEE catalogue. The R? values from these har-
monic regressions are also mapped in Extended Data Fig. 3, and the
asynchrony of the climatic factorsis mappedin Extended Data Fig. 7.

Tomodel the potentialimportance of topographic complexity for
driving phenological asynchrony, we downloaded a global map of the
vector ruggedness metric'®. We chose this over other measures of
topographic complexity because of its reduced correlation with slope.
We downloaded data published previously'®¢, choosing amap based
on Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010)
elevation data'” and median-aggregated at a scale on par with the
neighbourhood size of our main LSP asynchrony dataset (100 km).

To allow the model to reflect phenological asynchrony between
structurally distinct vegetation communities, we used GEE to create
aglobal map of entropy in vegetation structure within 100 km neigh-
bourhoods (hereafter, the vegetation entropy map). Todo this, we used
the same 20-year time series of annual MODIS IGBP 0.05° land cover®®
that we used in our LSP data-filtering workflow. We reclassed land cover
into categories of forest (IGBP classes 1-5: evergreen or deciduous
broadleaf or needleleaf forests and mixed forest), shrubland (IGBP
classes 6 and 7: closed and open shrublands), savanna (IGBP classes
8 and 9: woody savannas and savannas), grassland (IGBP class 10) or
permanent wetland (IGBP class 11). We then applied the same mask
used to calculate LSP asynchrony, so that the information captured
by this covariate would reflect the information included in the LSP
asynchrony response variable. Next, we reduced the 20-year time series
to asingle map representing the modal class for each pixel across all
years. Finally, we produced the covariate map by calculating the entropy
of the vegetation structure classes within each pixel’s 100 km radius
(the neighbourhood size of our main analysis) as -2, P(c;) log,P(c;),
where cis vegetation structure class and P(c;) is the proportion of the
neighbourhood thatis assigned class i.

As LSP asynchrony patterns could be influenced by human LULCC,
we used GEE to create two other 100-km neighbourhood covariates:
the mean proportion of subpixels classified as LULCC, and the mean
frequency of fire. We derived the mean LULCC proportion map from
aglobal, harmonized map of Landsat-resolution (30 m) land-cover
change andland use in2019', In GEE, we calculated the proportion of
subpixels within each of our target-resolution pixels that were classified
as any land-cover change or land-use class, including classes 92-116
and 212-236 (tree cover loss since 2000, with or without regrowth),
classes 240-249 (built-up land) and class 252 (cropland). We applied
to that LULCC proportion map the same mask used to calculate LSP
asynchrony, then calculated the mean within a100 km radial neigh-
bourhood for every pixel.

Asthesource datafor the LULCC map explicitly excludes fire-driven
tree cover loss, we also used GEE to produce a separate covariate
map estimating the neighbourhood mean frequency of fire. To
do this, for each pixel we counted the number of months with a
recorded burn date in the global monthly MODIS Burned Area data-
set, MCD64A1.061'%, divided that by the total number of months in
the dataset, used the arithmetic mean to aggregate the map from
its original 500 m resolution to our target resolution, applied the
same mask applied to the map used to calculate LSP asynchrony, then
calculated the mean of that fire frequency map within each pixel’s
100 km radial neighbourhood.

Modelling phenological asynchrony drivers

Toexplore the potential drivers of LSP asynchrony, we constructed an
RF modelusing the R package ranger (v.0.13.1)"° and incorporating the
set of covariates described above, formulated as:
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where LSP.asy is asynchrony of the LSP dataset used in a given model
(either NIR, or SIF), ppt.asy is PA, tmp.min.asy and tmp.max.asy are
minimum and maximum temperature asynchrony, def.asy is climate
water deficit asynchrony, cld.asy is cloud cover asynchrony, neigh
indicates the asynchrony neighbourhood radius used to calculate the
asynchrony metrics for a given model (50,100 or 150 km), veg.ent is
vegetation structural entropy, vrm.med is the median vector rugged-
ness metric, luc.prp.meais mean proportion of LULCC, brn.frq.meais
mean firefrequency, and xandyare pixel longitude and latitude (within
brackets to indicate their inclusion in only half of the suite of mod-
els). We chose the RF algorithm owing to its ability to robustly model
nonlinear relationships, suited to our expectation that phenological
asynchrony would be driven by different and potentially interacting
factorsin different regions of the globe. We developed a comprehen-
sive and conservative modelling workflow, which we ran once for each
combination of LSP dataset (NIR,, SIF), neighbourhood radius (50 km,
100 km, 150 km), and coordinate inclusion (geographical coordinates
eitherincluded or excluded as covariates). We examined the sensitivity
of our RF modelsto theinclusion of geographical coordinates because
ofthelack of consensus about how to handle spatial datain RF model-
ling™*2, This produced afinal set of 12models (Extended Data Fig. 9a).
Aswe found that salient results were largely insensitive to choice of LSP
dataset, neighbourhood radius and coordinate inclusion, we chose the
100 km, NIR,-based, coordinates-included model as the main model
to summarize and discuss in the main text of this article.

Before producing final results, we used R v.4.0.3 to prepare the
modelling data, tune hyperparameters and carry out feature selec-
tion. First, we projected the response and covariate rasters to ametric
projection (EPSG:3857) to ensure that coordinates were expressed in
metres, then stacked them and extracted their values at all valid (that
is, non-masked) pixels. Next, we carried out comprehensive hyper-
parameter tuning'®, assessing model performance as a function of
five RF tuning parameters (number of trees per forest: ‘ntree’ =150,
200, 250, 300; fraction of observations to use in each tree, for tree
decorrelation: ‘sample.fraction’ = 0.3, 0.55, 0.8; minimum number of
observations that can be captured by a node: ‘min.node.size’ =1, 3, 5,
10; size of random subset of variables from which to choose each node’s
splitvariable: ‘mtry’ =1, 3,5; and whether to sample with replacement:
‘replace’=true, false) and as afunction of the fraction of the full global
dataset used for modelling (‘subset.frac’ = 0.05,0.005; drawn asaran-
dom subsample, quartile-stratified by the LSP response variable, to
reduce the computational demand imposed by the size of the modelling
dataset without causing excessive information loss). We included geo-
graphical coordinates in all models used for hyperparameter tuning,
aswe intended to retain them in the main model unless we found that
predominant results were highly sensitive to their inclusion. We used
as a performance metric the root mean squared error (r.m.s.e.) of the
model fitted to a 60% training split of the subsampled global dataset
and found that the r.m.s.e. of the predictions made on the 40% test
split yielded the same set of optimum-performance hyperparameter
choices. Lastly, before running the final set of models, we confirmed
thatnone of our subsetted datasets contained variables with acollinear-
ity of R? > 0.75, and we used the Boruta feature-selection algorithm and
R package (Boruta v.7.0.0)" to select our final feature set (but found
no features that should be dropped).

We constructed the final 12 models using the optimum hyperparam-
etersindicated by our tuningresults (ntree =300, sample.fraction=0.8,
min.node.size =1, mtry =5, replace = false and subset.frac = 0.05). To
evaluate each model, we calculated two variable importance metrics—
ranger’s default permutation-based importance metric, which

compares the cross-tree average accuracy of out-of-bag sample pre-
dictions to the accuracy after permuting covariate values, and the
absolute SHAP values™ summed across all predictions in amodel’s
training dataset, calculated using the R fastshap package (v.0.0.7)"°—as
well as two metrics of overall model performance, R and r.m.s.e. To
help with spatial model assessment, we used trained models to make
LSP asynchrony predictions at allglobal pixels, then calculated predic-
tion error maps (Extended Data Fig. 9b shows the error map for the
main model). Lastly, to aid spatial interpretability of the models, we
calculated pixel-wise SHAP values and produced global SHAP maps
for each covariate.

Noting low variability across models in the covariatesidentified as hav-
ingthe highestimportance (Extended Data Fig. 9a), we summarized the
main model (100-km NIRy asynchrony, coordinatesincluded) in the text
andestimated the predominance of the top two covariatesin that model,
PA (ppt.asy) and MTA (tmp.min.asy), as anormalized difference of abso-
lute SHAP values: predom = (ISHAP; 5, = ISHAP 15 min asy)/ (ISHAP . oo |
+|SHAP 1, minasyl)- We plotted a summary map of the normalized dif-
ference across global regions of high LSP asynchrony (that is, pixels
>85th percentile), to show regional variation in the predominance or
codominance of these two drivers (Fig. 2b; Extended Data Fig. 9c shows
predominance across all covariates except geographical coordinates).

Isoclimatic phenological asynchrony
Totest the hypothesis that phenological asynchrony isless dependent
onclimatic difference at low latitudes than at higher latitudes, we per-
formed an ensemble analysis. Each sub-analysis in the ensemble first
uses clustering to delineate a global set of high-asynchrony regions,
then uses matrix regressions to estimate the slope of the relationship
between climatic and phenological distance (hereafter, the climate-
phenology correlation) within each of those regions. We defined the
sub-analyses within the ensemble using unique combinations of low,
middle and high values for three hyperparameters to which our final
results could exhibit sensitivity, then used Monte Carlo analysis to
assess the relationship, across the ensemble, between regions’ mean
latitudes and the strengths of their climate-phenology correlations.
To delineate high-asynchrony regions, we first converted our NIRy,
LSP asynchrony map into a map of maximum asynchrony pixels by
setting all pixels 295th percentile asynchrony value to 1 and masking
everything else. We then used the density-based spatial clustering of
applications with noise (DBSCAN) algorithm'’, implemented in the
Python package sklearn (v.1.0.2)", to cluster those high-asynchrony
pixels. We chose the DBSCAN algorithm owing toits ability to robustly
identify clusters of arbitrary shape around the high-density centres of a
point set without forcing all points to have cluster assignments, which
was a good match for the noisiness of our asynchrony map. Finally,
we used the alpha-complex algorithm (a straight-line edge variant
of the alpha-hull algorithm), implemented in Python by the Alpha
Shape Toolbox (alphashape, v.1.3.1)"%, to delineate high-asynchrony
regions around those clusters. This enabled us to relax the convexity
and contiguity assumptions of other hull-determination algorithms
and, therefore, to flexibly delineate regions with complex shapes (for
example, mountain arcs) without inevitably including all intervening
geographical areas, as would occur with convex hulls.
Toassess the relationship between the meanlatitude of aregionand
thestrength of the climate-phenology correlation within that region,
we first standardized and stacked each of the 19 WorldClim bioclimatic
variables" and standardized our global map of fitted phenocycles.
Then, for each delineated region, we executed the following steps:
(1) Draw a set 0of 1,000 random points within the region that all fall
within non-masked NIRv LSP pixels (or draw the maximum number
of points possible, if regions are too small for 1,000 points).

(2) Calculate the matrix of pairwise phenological distances (dist )
betweenall points (as 365-dimensional pairwise Euclidean distances
between phenocycles).
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(3) Calculate the matrix of pairwise climatic distances (dist,;,,) between
all points (as19-dimensional pairwise Euclidean distances between
bioclimatic values).

(4) Calculate the matrix of pairwise geographical distances (dist,,,)
between all points (as geodesic distances).

(5) Standardize all three pairwise distance matrix variables (so that
coefficients of all regressions are S8 coefficients and, therefore,
comparable), then run MMRR® using the formula phenology - .
climate + 8, geography, where . and j3, indicate the strengths of
therelationships between climatic and phenological distances and
between geographical and phenological distances, respectively.

To hedge against hyperparameter sensitivity, we chose reasonable
ranges of low, middle and high values of the key parametersin the clus-
tering and hull-delineation algorithms from which to compose our
ensemble. The DBSCAN clustering algorithm relies on two parameters
to which our results might be sensitive: ‘eps’ (epsilon), the maximum
geographical distance between two points that can be considered
to be in the same neighbourhood; and ‘min_samples’, the minimum
number of samples required within aneighbourhood for a pointtobe
considered as acore point. The alpha-complex algorithm has an addi-
tional parameter to which our results might be sensitive: ‘alpha’, avalue
controlling how edge members are chosen and, therefore, determin-
ing the maximum complexity of a hull’s edge. To create the ensemble,
we reran the full regionalization and climate-phenology correlation
analysis once for each combination of the following parameter values:
eps=2,3.5,5; min_samples = 0.3,0.45,0.6; and alpha = 0.25, 0.75,1.25.

As afinal step, we summarized the ensemble results across the 27
parameterizations by running the ordinary least squares regression
model § - ylat|ﬁ|, using y,,. to quantify the relationship between the
absolute value of the mean latitude of each cluster and the strength of
its climate-phenology correlation (Fig. 3b). As this regression violates
the assumptionthatsamples of the independent variables are IID—each
point represents a clustered and delineated high-asynchrony region,
andthoseregions can overlap across distinct parameterizations of the
sub-analyses—we used Monte Carlo analysis to generate an empirical
Pvalue for y,,.in the ensemble linear regression model. We ran 1,000
iterations of the same regression, each time permuting the vector of
|lat|values, then calculated an empirical P value as the fraction of the
1,000 simulated y,,, that are at least as extreme as the observed y,,,
(Fig.3c). Toprovide aspatially explicit geographical interpretation of
the results of this analysis, we mapped a summary of the ensemble
results as a hexbin map (Fig. 3a), with the colour of each hexbinindicat-
ingthemean g, of all high-asynchrony regions (thatis, delineated alpha
hulls) overlapping the bin’s hexagon.

Allochrony by allopatry: flowering
To explore the ability of remotely sensed LSP to predict geographical
variation in flowering phenology, we tested the correlation between
NIR, phenocycles and dates of flowering observations for all available
iNaturalist taxa with non-unimodal flowering histograms and without
extremely broad latitudinal distributions. First, we used the Python
API client pyinaturalist (v.0.19.0)'* to download from iNaturalist the
weekly flowering-observation histogram, and the first <5,000 native,
non-captive, research-grade flowering observations corresponding to
that histogram, for every taxon having >50 annotated flowering obser-
vationrecords at the time of download (downloads completed between
5June 2024, 23:00 UTC and 9June 2024, 00:00 UTC). Thisincluded a
total of 7,251 taxa out of the 34,438 iNaturalist taxa with at least one
observation (21.1%). We truncated the raw observation datasets to
<5,000 per taxon to limit strain on the iNaturalist API; preliminary
results showed that this decision was inconsequential because none
ofthe 39 taxa affected would ultimately be retained for later analyses.
We further filtered the observation points for eachtaxontoonly those
with at least 1 km positional accuracy, then used the alpha-complex

algorithm™®, with alpha set to 0.75 (the middle value used in our

isoclimatic phenological asynchrony analysis) to fit a conservative
geographical boundary (hereafter, observation range) to the set of
iNaturalist observations. One taxon dropped out of our analysis at
this stage because of the failure to fit an observation range. We then
estimated the number of peaks in the flowering-week histogram for
each taxon using the following steps:

(1) ‘Rotate’ the histogram so that the first instance of its minimum
value moved into the first position in the vector, to avoid spurious
results arising from flowering peaks that straddle the last and first
weeks of the calendar year.

(2) Fitakernel density estimation (KDE) to the histogram, using aband-
width of 5weeks, toreduce the noise resulting from temporal vari-
ance in observation counts.

(3) Use asimple, neighbour-comparison-based peak-search algorithm
(implemented in the find_peaks function in the signal module of
the Python package scipy v.1.13.0)” to count the number of peaks
inthe KDE with a height >60% of the overall range of values in the
histogram.

(4) Calculate the absolute value of the lag-1temporal autocorrelation
inthe observed KDE and in KDEs fitted to 100 permuted versions
of the rotated flowering histogram.

(5) Ifthe non-permuted KDE has an empirical P< 0.05 (thatis, if the abso-
lute value of the lag-1temporal autocorrelation of the non-permuted
KDEis greater than that of 295% of the permuted KDEs), thenit has
asignificant signal of temporal autocorrelation that probably rep-
resents non-random seasonal variability in flowering activity, so
assign the counted number of peaks as the observed number of
flowering-time peaks for the taxon; otherwise, assign zero as the
observed number of statistically significant flowering-time peaks.

Executing this procedure for all available taxa resulted in 6391
taxa (88.2%) with unimodal flowering-time histograms and 859
non-unimodal taxa, including 123 taxa (1.7%) with bimodal histograms,
one taxon with a trimodal histogram and 735 taxa (10.1%) with no sta-
tistically significant flowering-time peaks. We dropped the unimodal
taxa from further analysis because they were unlikely to exhibit the
sharp geographical discontinuities in flowering phenology that were
our main interest. We retained the 859 non-unimodal taxa to test for
significant signals of allochrony by allopatry. We summarized these
results by creating aset of hexbins covering all fitted observation ranges
and then mapping, for each hexagon, the proportions of taxa with
zero and with >2 flowering-time peaks and the overall proportion of all
non-unimodal taxa (Extended DataFig.10). To preclude significant but
uninteresting results for taxabroadly distributed across latitudes, and
therefore affected by the opposite seasonalities of the northern and
southern hemispheres, we dropped any taxa with samples extending
beyond both10° north and south latitudes (196 taxa).

We then looked for evidence of allochrony by allopatry by testing
each of the 663 remaining taxa for a correlation between intersite
flowering-date distances and intersite LSP distances. To do this, we
fittedan MMRR model for each taxon, specified as flowering_date ~ B,p
LSP + . climate + B; geography, where the variables are pairwise dis-
tance matrices and f, s, andits Pvalue were our output values of interest,
indicating the strength and statistical significance of the relationship
between LSP and flowering date distances after accounting for envi-
ronmental and geographical distances. Some non-unimodal taxamay
flower opportunistically, perennially or at multiple discrete times of
year within the same sites, and should therefore yield insignificant §,
values, but taxa exhibiting the strong geographical discontinuities in
flowering time that we would expect under allochrony by allopatry
shouldyield a significant, positive §, s, value. To produce the distance
covariates for this model, we calculated flowering date distances as the
shorter of the two forward-time or backward-time distances between
two observations’ numerical day-of-year values, LSP distances as the



365-dimensional Euclidean distances between the observation sites’
NIR, phenocycles, climate distances as the 19-dimensional Euclidean
distances between the sites’ vectors of standardized WorldClim™°
bioclimatic variables and geographical distances as the geodesic
distances between sites. We corrected S, s P values to control for the
false-discovery rate (FDR) using the ‘false_discovery_control’ function
in the ‘stats’ module of the Python package scipy (v.1.13.0)” with the
Benjamini-Hochberg method. Supplementary Table 4 provides results
for the 43 taxathat remained significant after FDR control (of 614 taxa
successfully tested, after 49 dropped out because of insufficient data
for model-fitting), and the full results from all stages of this analysis
are archived with the data for this study.

Tovisualize the results of this analysis for an example taxon, we plot-
ted atemporal comparison between the flowering observation dates
and the flowering observation locations’ min-max scaled phenocycles
as well as a map of the observation locations, coloured according to
k-means clustering of the phenocycles (k = 2) to highlight the spatial
and temporal structure of the geographical discontinuity in phenol-
ogy. We constructed this visualization (Fig. 4a) for two example taxa
with FDR-corrected significance, chosen to demonstrate the corre-
spondence of their patterns of allochrony by allopatry to the regional
LSP patterns we had mapped and highlighted earlier in the article
(M. scabra, in southwestern North America; S. parviflorum, in South
Africa).

Allochrony by allopatry: genetics
Totest whether remotely sensed LSP predicts the phenologically driven
isolation by time* thatis expected to result from allochrony by allopa-
try, above and beyond isolation by distance'” and isolation by envi-
ronment'?, we fitted genetic MMRR models to a pair of datasets from
two of the few published genetic studies of the ASH, substituting LSP
distances calculated from our dataset for the authors’ previously used
measures of asynchronous seasonality, then compared our results to
theirs. First, we gathered and prepared the genomic and geographical
data from the only genomic test of the ASH of which we are aware, a
study of the eastern Brazilian toad R. granulosa®. We used the R package
adegenet (v.2.1.5)'**** and data downloaded from the Dryad reposi-
tory for that study (https://datadryad.org/stash/dataset/d0i:10.5061/
dryad.pc866tl1p4) to calculate a pairwise genetic distance matrix for 80
samples collected from 51 localities, based on the Euclidean distance
between allele frequencies at 7,674 independent single-nucleotide
polymorphism loci. We calculated geographical- and LSP-distance
matrices as described above, using the geographical coordinates of
eachsample, and prepared a climatic distance matrix using the Euclid-
ean distances between standardized versions of the four WorldClim""
bioclimatic variables used in the original study: annual mean temper-
ature (BIO1), temperature seasonality (BIO4), annual precipitation
(BIO12) and precipitation seasonality (BIO15). Five samples fell within
masked pixelsinour LSP dataset and thus could notbe includedin our
analysis, yielding a final sample size of 75. We fit an MMRR model speci-
fied as genetic ~ B,p LSP + B climate + ; geography, then compared
ourresultstotheresults presentedintable 4 of ref. 25. To visualize our
findings we used k-means clustering with Euclidean distances to divide
the samples into k =2 clusters, first clustering by NIR, phenocycles,
then a second time clustering by genetic distance vectors. We then
prepared side-by-side equivalent plots showing sample localities and
their min-max-scaled phenocycles, coloured by either of those clus-
terings, providing a simple visual indication of the extent to which our
LSP map recapitulates the observed genetic structure (Fig. 4b (top)).
Toexplore whether disparately related, sympatric taxa might exhibit
similar patterns of isolation by asynchrony, we repeated the same pro-
cedureforthe only other sympatric genetic dataset that we could find
within previous studies of the ASH: cytochrome B sequencing data
for the lesser woodcreeper (X. fuscus; Furnariidae)®. We first down-
loaded sample location data from the Zenodo archive for the study

(http://zenodo.org/records/5012226)'* and the FASTA-formatted sam-
plesequence datafrom GenBank. We aligned sequences using ClustalW
(v.2.1)?*with the default parameter settings and then used jModelTest2
(v.2.1.10)**" to compare the fit of 44 models of sequence evolution to the
sequence data. We then calculated pairwise genetic distances under
thebest-fitmodel (TVM + G), identified with AICc scores, using MEGA
X (v.10.1.7)"*8, We then followed the same steps as for the R. granulosa
data, except that we used all 19 WorldClim variables. Our sample size
wasreduced to 31 because three sampling sites fell within masked LSP
pixels. The results are visualized in Fig. 4b (bottom).

Allochrony by allopatry: coffee harvest

To test for significant agreement between the harvest season map
produced by the National Federation of Coffee Growers of Colom-
bia (Federacion Nacional de Cafeteros de Colombia, or Fedecafé) and
our LSP map, we constructed a permutation-based test of an index of
similarity between the harvest categoriesin the Fedecafé map and the
categories resulting from clustering on NIR, phenocycles. First, we
used WebPlotDigitizer®® to digitize and save a set of sampling points
within each of the four harvest season colours displayed ina previously
published Fedecafé map>. Next, we used Python to extract NIR, phe-
nocycles at allunmasked pixels coinciding with those points and then
used k-means clustering to cluster all extracted phenocycles into four
clusters. We then calculated the Jaccard index™ of this cluster assign-
ment vis-a-vis the Fedecafé harvest season assignment as:

J=Npoin/ (Mpedecars + Musp + Mooch)

where ng.q.q.re is @ count of pairwise point comparisons that have the
same assignment only within the Fedecafé map, n s, is a count of those
that have the same assignment only within the LSP clustering and n,,,
is a count of those that have the same assignment in both datasets.
Finally, we executed the same operation 1,000 times, each time first
permuting the relationship between the sampling points and their
phenocycles, generating aset of null / values against which to calculate
an empirical P value for the observed J value (as the fraction of the
1,000simulated /valuesthat are at least as large as the observed J). We
visualize the overall agreement between the Fedecafé map and ours by
plotting sampling points on top of the RGB composite from the LSP EOF
analysis (but not transformed across the ITCZ, given the colour-warping
this causes within this region) and using colour to match the harvest
season assignments of the sampling points to a series of line plots of
their median, 10th percentile and 90th percentile phenocycles in our
dataset (Fig. 4c).

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Input datasets (Supplementary Table 1) are publicly available and
were accessed using the following resources: MODIS MCD43A4 v061
surface reflectance (https://developers.google.com/earth-engine/
datasets/catalog/MODIS_061_MCD43A4), OCO-2 SIF (https://daac.
ornl.gov/VEGETATION/guides/Global_High_Res_SIF_0CO2.html), TRO-
POMI SIF (https://doi.org/10.22002/D1.1347), MODIS MCD12C1.061
annual land cover (https://developers.google.com/earth-engine/
datasets/catalog/MODIS_061_ MCD12C1), PhenoCam NDVI (accessed
using R package phenocamapi: https://github.com/PhenoCamNet-
work/phenocamapi), FLUXNET GPP (https://fluxnet.org/data/),
percentage of annual herbaceous cover in the Great Basin (https://
doi.org/10.5066/P9VL3LDS5), TerraClimate (https://developers.
google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_TERRA-
CLIMATE), MODIS Aqua and Terra surface reflectance cloud bands
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(https://developers.google.com/earth-engine/datasets/catalog/
MODIS_061_ MYDO9GA, https://developers.google.com/earth-engine/
datasets/catalog/MODIS_061_MODO9GA), EarthEnv topographic com-
plexity (http://www.earthenv.org/topography), Global Land Analysis
& Discovery global land cover and land use 2019 (https://glad.umd.
edu/dataset/global-land-cover-land-use-vl), MODIS MCD64A1.v061
monthly burned area (https://developers.google.com/earth-engine/
datasets/catalog/MODIS_061_MCD64A1), WorldClim bioclimatic
variables (https://www.worldclim.org/data/worldclim21.html),
iNaturalist flowering observations (accessed using Python package
ipynaturalist; https://github.com/pyinat/pyinaturalist), R. granulosa
single-nucleotide polymorphism data (https://datadryad.org/stash/
dataset/doi:10.5061/dryad.pc866t1p4)=°, Xiphorhynchus fuscus
cytochrome Bsequencing data (http://zenodo.org/records/5012226)'%
and Fedecafé Colombian coffee harvest season map data (digitized
from https://doi.org/10.19053/20275137.3200). All data supporting the
findings of this study are archived at Zenodo (https://doi.org/10.5281/
zen0do.15654956)"'. AGEE app provides the ability to explore the LSP
modelling method, the global LSP map displayedin Fig.1and the global
LSPasynchrony map displayedin Fig.2a; itis demonstratedin Extended
DataFig.2eand islinked in our GitHub repository (https://github.com/
erthward/phen_asynch; https://doi.org/10.5281/zenodo.15671259)%2.

Code availability

All custom code and details of the computing environments used to run
itare publishedin this project’s GitHub repository (https://github.com/
erthward/phen_asynch, https://doi.org/10.5281/zen0od0.15671259)°%.
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Extended DataFig.1|Overview of mapping methods and data masking.
A.Workflow for all global mapping analyses. B. Maps of data dropped fromall
analyses (inred) and additionally omitted from asynchrony analyses to avoid

anthropogenicasynchrony inagriculturalland cover (black) that could
confound evolutionary analyses, with colour-matched table reporting
cumulative masked proportions of total continental land areas.
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Extended DataFig.2|LSP model-fitting examples across biomes.
A.Mediterranean climate: Results of the harmonic regression procedure
areshown at FLUXNET tower sites distributed across three ecosystems
displaying the characteristic ‘double peak’ LSP pattern across the Californian
Mediterranean climate region*’: forest (the Blodgett Forest site), oak savanna
(TonziRanch), and wetland (Twitchell Wetland West Pond). The map on the left
shows the same RGB composite as Fig.1. The plots on the right show eachssite’s
original, 20-year NIRy time series (solid black line) and fitted phenocycle
(dashedredline). The abrupt reductioninamplitude in mid-2014 at Blodgett
Forest, an experimental forestry plot, likely reflects aland use or land cover
change event, but manual inspection of the MCD12Cl1 land cover product used
for our data filtering workflow suggests that the on-ground activity was not
intensive enough toregister achangeinmapped land cover type.B. Arid
climate: Results at two sitesin the southern Australian Outback, displayed
identically to A. Our model assigns divergent phenocycles to these two areas:
the Nullarbor Plain, along the coast of South Australia (Outback1), hasa
winter-peaking pattern likely influenced by the Mediterranean monsoonal
climate, whereas the inland desert (Outback 2) has a fall-peaking pattern likely
responding to the summer monsoon® — arough analogue of the LSP gradient
wedescribeinthe southwestern USA and northwestern Mexico (Fig.1a). The
Outback’s rainfall-driven, globally exceptional interannual variability in
productivity** results ininterannual variability in the timing and size of NIR,
peaks. C. Tropical montane climate: Results at two sites in the Colombian
Andes, displayedidentically to A. Tropical montane regions challenge remote
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sensing of phenology because of frequent cloud cover and smallintra-annual
variability in productivity that yields alow signal:noise ratio. Nevertheless the
regions surrounding these sites exhibit spatially coherent phenocycles that,
despite their proximity, peak nearly six months apart, paralleling the extreme
allochrony by allopatry that we document in the complex geography of
Colombian coffee harvest seasonality (Fig. 4c). D. Boreal climate: Results at
two sitesin Saskatchewan, Canada, displayed identically to A. Long periods

of snow coverintreeless land cause annually recurring stretches of invalid
negative NIR, values, which would lead to low data availability and extensive
datadropoutacrosscleared boreal lands. Backfilling of negative values with
the minimum positive value observed in a pixel’s time series — causing the
winter ‘flatlining’ visible in the ‘Boreal field’ plot — allows us to retain these
areas andfitreasonable phenocycles, revealing the expected synchrony with
neighbouring forest, where winter values are extremely low but not negative.
E.Readers canrecreate and explore the results of our harmonicregression
procedure using a Google Earth Engine app (link available at: https://github.
com/erthward/phen_asynch, https://doi.org/10.5281/zenod0.15671259).
Theoriginal NIR, time seriesis depicted in blue and the fitted phenocycle in
red for a pair of sites indicated by the map markers. The results depicted here
reveal amarked difference between the pronounced, unimodal annual
phenology observed inthe floodplain of the Purus River,an Amazon tributary
(upper line plot), and the bimodal phenology observed in nearby upland forest
(lower line plot), likely reflecting the strong control of annual flooding over the
annual phenologies of floodplain habitats®.
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Extended DataFig.3 | Harmonicregression performance. Maps of the R?values from the harmonic regressions estimating annual LSP maps (top row) and
climatic seasonality maps (remaining rows).
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Extended DataFig. 4 |LSP EOF results and visualization. A. Raw LSP EOF
maps: Maps on the left show the top four modes of annual LSP spatiotemporal
variability according to an empirical orthogonal function (EOF) analysis, and
line plots ontheright show the annual temporal variation of the principal
components (PCs) corresponding to each EOF. EOF values are standardized
and centred on zero,and maps are ordered by decreasing percent total
variance explained, fromtop tobottom. Band C. Non-transformed RGB LSP

maps: The non-transformed values of all three top EOF modes are depicted as
RGB values (B), and are subtracted from1.0 and then depicted as RGB values
(C). These tworepresentations are the latitudinally-agnostic maps from which
we derived the transformation presented in Fig. 1by computing a weighted sum
ofthese two maps, with weights varyingin a piecewise function from1.0to 0.0
northtosouthacrossthelTCZ (dotted black line straddling the equator).



Extended DataFig. 5|Intercontinental convergenceinLSP. We observed
astriking convergence between the LSP gradientsin Earth’s two more
climatically moderate Mediterranean climate regions®: the Cape Region of
South Africa (A) and southernand southwestern Australia (B). In both regions,
small areas of moist habitat (colour1in both panels) show summer-peaking
phenologies, contrasting with the progression of peaks observed across the
broaderregional aridity gradients (colours 2-4). We also observed convergent
phenological gradients across coastal-inland aridity gradientsin two southern
tropical regions: Madagascar (C) and the Cape York Peninsula of Queensland,
Australia (D) show a one-to-two month delay between the summer-peaking

phenologies of coastaland montane rainforests (colour 1in both panels) and
the fall-peaking phenologies observed across drier habitats and non-forest
(colours2and 3). Agricultural mosaics in northern-hemisphere continental
climates also display convergence, including the Corn Belt region of the USA (E)
and northernltaly (F), where deciduous and montane forest regions (colour 2in
both panels) exhibit characteristic phenologies that peak around July, roughly
one monthahead of the characteristically delayed peaks'® in prominent maize-
producing areas (colour 3) but about one-and-a-half months after the peaksin
other agricultural areas and in non-forest regions (colour1).
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Extended DataFig. 6 | LSP map evaluation. A. LSP modality. The NIR,
phenocycleat each pixelis depicted onaspectrum from strongly bimodal

(two peaks of equal height; red) to weakly bimodal (two peaks, one twice as
high as the other; grey) to unimodal (asingle peak per year; blue). The pattern
depicted hereisaclose matchto previously published maps of regions with
single versus double growing seasons (e.g., Fig. 3in Garonnaetal.*). B. Agreement
between NIR, and SIF phenocycles. This map depicts each pixel’s R>between
the phenocycles fitted toits NIR, and SIF time series. Tan pixels are terrestrial
locations that have been masked because of invalid land cover or insufficient
data quality. C. Orbital-gap assessment of seasonality ininterpolated Orbiting
Carbon Observatory 2 (0OCO-2) data. Above: Map showing locations of random
pointsinthreetropical regions (South Americainorange, Africain purple,
Indo-Pacific and Australiain blue), chosen to fall within OCO-2 orbital gaps
(n=180 points; 60 per region). Below: For each sampled pointin each of the
threeregions we plotall contemporaneous estimates from the ANN-gridded
0CO-2SIF dataset used in our asynchrony maps and fromanindependent
TROPOspheric Monitoring Instrument (TROPOMI) SIF dataset (n =1550
available contemporaneous estimates). Anintercept-free OLS regression
depicts thessignificantlevel of agreement between these two independent sets
of measurements (model P-value < 5x10%%*). D. Evaluation of fitted phenocycles

against NDVItime series at PhenoCam ground phenology cameras. i. and iii.
Each phenology camerasite (n =368 sites) is plotted in the environmental
space defined by mean annual temperature (MAT) and mean annual
precipitation (MAP), with the Whittaker biomes®® plotted beneath for context.
Sites are coloured by the R?(scaled from O=black to 1=white) between: 1.) the
annual cycle fitted to thesite’s three-day-summary time series of camera-
derived normalized difference vegetationindex (NDVI), averaged across
allregions of interest within the camera’s field of view to approximate the
spatial averaging that occurs within a co-located remote sensing pixel;and 2.)
the phenocyclefitted to the remotely sensed NIRy (i.) or SIF (iii.) dataat asite
(or up totwo map pixels away, -11 km). ii. and iv. Phenology camera evaluation
performance (R? across camera NDVItime series lengths, for both the NIR, (ii.)
and SIF (iv.) datasets, with points coloured by Whittaker biome. Black vertical
linesindicate the time series lengths of our LSP datasets (20 years for NIR,; 4%
years for SIF), for comparison. E. Evaluation of fitted phenocycles against GPP
time series at FLUXNET eddy covariance flux towers. Visualization is identical
to D, butdepictsthestrength of correlation between daily gross primary
productivity (GPP) time series collected at FLUXNET2015 flux towers
(n=170sites) and LSP phenocycles.
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Extended DataFig.7 | Asynchrony calculation and mapping. A. Conceptual
diagram depicting the stepwise calculation of our spatial phenological
asynchrony metric, inregions of both low asynchrony (left) and high (right).
Maps depict spatial heterogeneity in day of the year corresponding to peak
phenology (circular colorbar provided at far left). Central focal pixel (black
star) isthe pixel for which asynchrony s calculated, using an analysis based on
pairwise comparisons between the focal pixel and each other pixelinside the
focal pixel’s neighbourhood (white dashed circle). Line plots show phenocycles
pertainingto each of the neighbour pixelsinside the circular neighbourhood,
with the focal pixel showninbold black. Scatter plots depict the relationship
between pairwise geographic distances and pairwise phenological distances

forallcomparisons between the focal pixel and its neighbours. The slope of the
trend line fitted to the scatter plot by simple linear regressionis taken as the
focal pixel’s asynchrony metric. Neighbour pixels at lesser (orange) and greater
(red) geographic distances from the focal pixel are tracked across the plots,
illustrating how phenological distance increases with geographic distance
whenasynchrony is high. B. Maps showing the results of calculating the
asynchrony metric presented insubpanel A. for all LSP and climatic variables
(rows) and across all three neighbourhood radii (columns). Triangle plots (far
right) show each variable’s map correlations (R?values) for all three inter-
neighbourhood comparisons.



le-5

5
g 40 A
2 < - R?=0.42
S S 30
1 > o
k) <
N 2 20
o ! s
7
1 m; < 10 A
-2 0 0
S,
© -0, : : : :
-10 0 10 20 30 40
‘i 1e—5 le-5
, &
< > 207 R2=0.50
Q c
N o
1S o
k) <
© [v]
I c
0 - >
3
> >
-1 <
E x
S =
-2
2
0 10 20
: - le-5
5 uj 15 A
< - R2=0.51
2 c
1 § o 101
—_
v <
© [v]
I c
0 i
@ >
1 & >
E € ]
S =
-2
>
_5-
(V] T T T T
=5 0 5 10 15

SIF asynchrony le-5
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Extended DataFig. 8| NIR,-SIF LSP asynchrony map comparison. Maps
drawnasaredlineandits R?valueindicated. Slope P-value < 5x10*for all

show the pixelwise differences between standardized NIR,- and SIF-derived
LSPasynchrony maps, across neighbourhood radii (top row: 50 km; middle: threeregressions.
100 km; bottom: 150 km). Scatter plots at the right depict the correlation
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Extended DataFig.9|Modelling of LSP asynchrony drivers. A. Ensemble
results ofrandom forest modelling of LSP asynchrony drivers. Set of colorized
tables depicts variableimportance, both SHAP-based (left tables) and
permutation-based (centre), as well as overall model performance (R*and root
meansquared error; right) for models either including (top tables) or excluding
(bottom) geographic coordinates as covariates, and for models using both

the NIRyand SIF phenology metrics and using all three neighbourhood radii
(nested columns withintables). Darker orange hues indicate higher relative
covariateimportance. Abbreviations are: neighbourhood meanburn frequency
(brn.frg.mea), fractional cloud cover asynchrony (cld.asy), asynchrony

of monthly climate water deficit (def.asy), neighbourhood mean proportion
ofland use and land cover change sub-pixels (luc.prp.mea), asynchrony

of monthly precipitation (ppt.asy), asynchrony of monthly minimumand
maximum temperatures (tmp.min.asy and tmn.max.asy), and longitude and
latitude (xandy). B.Map showing the standardized LSP asynchrony prediction
errors for themainmodel (the model whose results are outlined in blue in
subpanel A:NIR,-based LSP,100 km neighbourhood radius, with geographic
coordinatesincluded as covariates). C. Map depicting predominance in main
model of all covariates except geographic coordinates, within global regions
of high LSP asynchrony (=90th percentile). Precipitation asynchrony and
minimum temperature asynchrony, already the focus of Fig. 2b, are here
depictedindarker huesto allow better discrimination between the remaining
covariates.
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Extended DataFig.10 | Global distribution of non-unimodal flowering taxa
fromiNaturalist. Hexbin maps showing the global distribution of iNaturalist
taxawith flowering-date histograms that are non-unimodal, calculated as the
proportion of all tested taxa whose ‘observationranges’ (i.e., alpha hulls fitted
toall observation points) overlap each hexbin. Maps show the proportions of
taxawith histograms that have nosignificant temporal flowering peaks (top),
taxawith histograms that have two or more significant peaks (middle), and taxa
exhibiting any form of non-unimodality (bottom).
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Software and code

Policy information about availability of computer code

Data collection  Custom Bash (version 4) and Python (3.7) scripts were used to facilitate download of some SIF data and upload of that data to Google Earth
Engine, and custom R (4.0) and Python (3.9) scripts were used to download PhenoCam and iNaturalist data.




Data analysis Data analysis used custom code written in a variety of languages and using a variety of packages on three different computing environments:
1. Google Earth Engine (via version >=0.1.404 of the browser-hosted Javascript API); 2. a local computing environment, including Pop!_0S
(22.04 LTS), Bash (5.1.6), GDAL (3.3.1), Python (3.9, with numpy (1.22.4), rasterio (1.2.10), xarray (2022.3.0), rioxarray (0.15.0), pandas (2.2.1),
shapely (2.0.3), geopandas (0.14.3), zipfile36 (0.1.3), tensorflow (2.4.1), pyproj (3.6.1), cartopy (0.20.2), geopy (1.13.0), scipy (1.13.0), sklearn
(1.0.2), alphashape (1.3.1), rasterstats (0.16.0), statsmodels (0.13.2), seaborn (0.11.2), fuzzywuzzy (0.18.0), Bio (1.79), pyinaturalist (0.19.0),
json (2.0.9), nlmpy (no version), matplotlib (3.7.0), h3 (3.7.4), decartes (no version), contextily (1.2.0), xyzservices (2022.4.0), palettable
(3.3.0), cmocean (2.0), cmcrameri (1.8), colormap (1.0.4), imageio (2.19.0), and cv2 (4.9.0)), R (4.0.5, with adegent (2.1.5), ape (5.6.2), and
phenocamapi (0.1.5)), and MAFFT (7.520); 3. a high-performance computing environment on UC Berkeley's Savio compute cluster, including
Scientific Linux (7.9), Bash (4.2.26), GDAL (2.2.3), Python (3.7, with numpy (1.21.5), rasterio (1.1.5), xarray (0.20.2), rioxarray (0.9.1), pandas
(1.3.5), geopandas (0.8.1), json (2.0.9), tensorflow (2.3.1), affine (2.3.0), haversine (no version), eofs (1.4.0), scipy (1.4.1), sklearn (0.21.3), and
matplotlib (3.1.1)), R (4.0.3, with dplyr (1.0.8), rgdal (1.5.18), sp (1.4.6), sf (0.9.7), raster (3.4.5), maps (3.4.0), rsample (0.1.1), ranger (0.13.1),
Boruta (7.0.0), fastshap (0.0.7), vip (0.3.2), pdp (0.7.0), ggplot2 (3.3.5), ggthemes (4.2.4), grid (4.0.3), and RColorBrewer (1.1.2)), and Julia
(1.4.1, with Distributed (no version), OrderedCollections (1.4.1), StaticArrays (1.3.5), Glob (1.3.0), TFRecord (0.1.0), JSON (0.21.3), ArchGDAL
(0.7.4), Distances (0.10.7), NearestNeighbors (0.4.9), Statistics (no version), StatsBase (0.33.16), GLM (1.6.1), and Colors (0.12.8)).

All custom code and details of the computing environments used to run it are published in this project’s GitHub repository (https://
github.com/erthward/phen_asynch).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Input datasets (Supplementary Table 1) are publicly available and were accessed using the following resources: MODIS MCD43A4 v061 surface reflectance (https://
developers.google.com/earth-engine/datasets/catalog/MODIS_061_MCD43A4), OCO-2 sun-induced chlorophyll fluorescence (https://daac.ornl.gov/VEGETATION/
guides/Global_High_Res_SIF_0CO2.html), TROPOMI SIF (https://doi.org/10.22002/D1.1347), MODIS MCD12C1.061 annual land cover (https://
developers.google.com/earth-engine/datasets/catalog/MODIS_061_MCD12C1), PhenoCam normalized difference vegetation index (accessed using R package
phenocamapi: https://github.com/PhenoCamNetwork/phenocamapi), FLUXNET gross primary productivity (https://fluxnet.org/data/), percent annual herbaceous
cover in the Great Basin (https://doi.org/10.5066/P9VL3LD5), TerraClimate (https://developers.google.com/earth-engine/datasets/catalog/
IDAHO_EPSCOR_TERRACLIMATE), MODIS Aqua and Terra surface reflectance cloud bands (https://developers.google.com/earth-engine/datasets/catalog/
MODIS_061_MYDO09GA, https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MODO09GA), EarthEnv topographic complexity (http://
www.earthenv.org/topography), Global Land Analysis & Discovery global land cover and land use 2019 (https://glad.umd.edu/dataset/global-land-cover-land-use-
v1), MODIS MCD64A1.v061 monthly burned area (https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MCD64A1), WorldClim bioclimatic
variables (https://www.worldclim.org/data/worldclim21.html), iNaturalist flowering observations (accessed using Python package ipynaturalist, https://github.com/
pyinat/pyinaturalist), Rhinella granulosa single nucleotide polymorphism data (https://datadryad.org/stash/dataset/doi:10.5061/dryad.pc866t1p4), Xiphorhynchus
fuscus cytochrome B sequence data (http://zenodo.org/records/5012226), and Fedecafé Colombian coffee harvest season map data (digitized from https://
doi.org/10.19053/20275137.3200). All data supporting the findings of this study are archived with Zenodo (DOI: https://doi.org/10.5281/zenodo.15654956) 127. A
Google Earth Engine App provides the ability to explore the LSP modeling method, the global LSP map displayed in Fig. 1, and the global LSP asynchrony map
displayed in Fig. 2A; it is demonstrated in Extended Data Fig. 2E and is linked in our GitHub repository (https://github.com/erthward/phen_asynch).

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender not applicable

Reporting on race, ethnicity, or not applicable
other socially relevant
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Population characteristics not applicable
Recruitment not applicable
Ethics oversight not applicable

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Data exclusions | Describe any data exclusions. If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the
rationale behind them, indicating whether exclusion criteria were pre-established.

Replication Describe the measures taken to verify the reproducibility of the experimental findings. If all attempts at replication were successful, confirm this
OR if there are any findings that were not replicated or cannot be reproduced, note this and describe why.

Randomization | Describe how samples/organisms/participants were allocated into experimental groups. If allocation was not random, describe how covariates
were controlled OR if this is not relevant to your study, explain why.

Blinding Describe whether the investigators were blinded to group allocation during data collection and/or analysis. If blinding was not possible,
describe why OR explain why blinding was not relevant to your study.

Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional,
quantitative experimental, mixed-methods case study).

Research sample State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic
information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For
studies involving existing datasets, please describe the dataset and source.

Sampling strategy Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to
predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a
rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and
what criteria were used to decide that no further sampling was needed.

Data collection Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper,
computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and
whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Timing Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample
cohort.
Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the

rationale behind them, indicating whether exclusion criteria were pre-established.

Non-participation State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no
participants dropped out/declined participation.

Randomization If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if
allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description We use remote sensing archives of MODIS near infrared reflectance of vegetation and sun-induced chlorophyll fluorescence to
assess global patterns of land surface phenological diversity and spatial phenological asynchrony, to explore potential climatic and
physiographic drivers of that asynchrony, and to test whether that asynchrony is more correlated with between-site climatic
differences at higher latitudes than in the tropics. We then used iNaturalist flowering observation data, previously published genomic
and genetic data, and a map of Colombian coffee harvest seasonality to demonstrate the utility of land surface phenology for




predicting species-level spatial 'allochrony by allopatry', i.e., phenological asynchrony and genetic divergence as a function of the
difference in seasonal timing between populations.

Research sample The global land surface phenology datasets we present are derived from the MODIS land surface reflectance archive and (for
validation of the MODIS data) a neural-net interpolated map of sun-induced chlorophyll fluorescence from the Orbiting Carbon
Observatory 2. The samples in our global random forest analyses predicting the spatial asynchrony of land surface phenology are
random samples chosen to represent our full global phenological dataset and quartile-stratified by the response variable. iNaturalist
samples are opportunistic, voluntarily reported and annotated records of flowering, and genomic and genetic samples were
determined by the designs of the studies from which they are derived.

Sampling strategy In our random forest analyses, sample sizes (expressed as a fraction of the size of the full global dataset) was tuned as a
hyperparameter during our model-development process (details described in methods). In our ensemble of permutation-based
matrix regressions, sample sizes were up to 1000 points drawn within each high-asynchrony region (reduced due to dropout of any
randomly drawn points that did not fall within valid pixels in the land surface phenology dataset). The samples in our ensemble of
permutation-based matrix regressions are random samples of up to 1000 points drawn within the high-asynchrony regions defined
by the regionalization algorithm described in the methods. Samples in the iNaturalist flowering phenological analysis included all
available samples (as of the noted data of download) for all taxa passing a series of eligibility requirements. Samples for the genomic
and genetic analyses derive from the only previously published genomic study of the Asynchrony of Seasons Hypothesis (ASH) and
the only sympatric species among the few previously published genetic studies of the ASH. Samples for the Colombian coffee analysis
were drawn across the entire area of a previously published map of coffee harvest seasonality.

Data collection All input data comes from publicly available data archives and is documented in previous peer-reviewed publications.

Timing and spatial scale  Our main phenological dataset (MODIS near infrared reflectance of vegetation) provides data for every fourth day during the period
from 2001/01/01 to 2020/12/31, providing us enough data to estimate the characteristic annual land surface phenology pattern for a
location while remaining computable on Google Earth Engine. Our validation dataset (Orbiting Carbon Observatory 2-derived sun-
induced chlorophyll fluorescence) provides twice-monthly data covering the period from 2014/09/01 to 2018/12/31, which was the
longest available such archive at an acceptably high resolution at the time this study began.

Data exclusions Pixels were excluded from the land surface phenology datasets if they contained >10% coverage of invalid land cover (e.g.,
permanent snow and ice, barren, or water bodies, where no true phenological pattern would be expected); if they were subject to
land cover change that could contaminate the characteristic phenology being fitted (i.e., transitioned to/from agriculture); if they
were missing >50% of potential data overall, >90% of data in any month (across years), or had a Pielou's data availability evenness of
<0.8 (calculation described in methods), to prevent fitting of spurious phenological peaks during long, seasonally recurring periods of
low data coverage, such as we observed in very high latitudes; or if permutation testing indicated that the R*2 of their fitted
phenological harmonic regression was not significant (details provided in methods). To avoid sensitivity of downstream analyses to
anthropogenic phenology patterns, all agricultural pixels were excluded from asynchrony maps and asynchrony-based analyses.

Reproducibility Our results are not based on experiments, so experimental reproducibility could not be verified. However, we went to lengths to
evaluate our findings against a second, independent remote sensing dataset, to assess the accuracy of that evaluation dataset itself,
to tune the hyperparameters of our random forest models, and to cross-check our random forest modeling results across
combinations of key' modeling decisions (choice between two response-variable datasets; choice of neighborhood within which to
calculate pixels spatial asynchrony values; and choice of whether or not to include geographic coordinates as model features).

Randomization Our study did not allocate units to groups. However, we used random subsampling when constructing predictive models on large,
dense spatial datasets (details described in methods).

Blinding Blinding was not relevant to our study, as sampling units were not assigned to treatments and controls.

Did the study involve field work? D Yes |X| No

Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).
Access & import/export | Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority,

the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods
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Antibodies used Describe all antibodies used in the study, as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) State the source of each cell line used and the sex of all primary cell lines and cells derived from human participants or
vertebrate models.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines  pnume any commonly misidentified cell lines used in the study and provide a rationale for their use.
(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable,

export.

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are
provided.

|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals For laboratory animals, report species, strain and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field, report species and age where possible. Describe how animals were
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released,
say where and when) OR state that the study did not involve wild animals.

Reporting on sex Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex.
Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall




numbers in this Reporting Summary. Please state if this information has not been collected. Report sex-based analyses where
performed, justify reasons for lack of sex-based analysis.

Field-collected samples | For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.
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Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.
Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
Qutcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:

No | Yes
|:| Public health

L]
|:| |:| National security

|:| |:| Crops and/or livestock
[

|:| Ecosystems
|:| Any other significant area

[

Experiments of concern

Does the work involve any of these experiments of concern:

<
™
%}

Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

minnininininink;
Ooogoood

Any other potentially harmful combination of experiments and agents




Plants

Seed stocks not applicable

Novel plant genotypes  not applicable

Authentication not applicable
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ChlP-seq

Data deposition
|:| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,
May remain private before publication. | provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.
Genome browser session Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
(e.g. UCSC)

enable peer review. Write "no longer applicable" for "Final submission" documents.

Methodology
Replicates Describe the experimental replicates, specifying number, type and replicate agreement.
Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and
whether they were paired- or single-end.
Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and

lot number.

Peak calling parameters | Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files

used.
Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.
Software Describe the software used to collect and analyze the ChlP-seq data. For custom code that has been deposited into a community

repository, provide accession details.

Flow Cytometry

Plots

Confirm that:
|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|:| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|:| All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology
Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.
Instrument Identify the instrument used for data collection, specifying make and model number.
Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a

community repository, provide accession details.




Cell population abundance

Gating strategy

Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design
Design type

Design specifications

Indicate task or resting state; event-related or block design.

Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

Behavioral performance measures  State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used

Acquisition
Imaging type(s)

Field strength

Sequence & imaging parameters

Area of acquisition

Diffusion MRI [ ] used

Preprocessing

Preprocessing software
Normalization
Normalization template
Noise and artifact removal

Volume censoring

to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across
subjects).

Specify: functional, structural, diffusion, perfusion.
Specify in Tesla

Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,
slice thickness, orientation and TE/TR/flip angle.

State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

D Not used

Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g.
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).

Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings

Effect(s) tested

Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether

ANOVA or factorial designs were used.

Specify type of analysis: [ | whole brain || ROI-based [ ] Both

Statistic type for inference

(See Eklund et al. 2016)

Correction

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).
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Models & analysis

n/a | Involved in the study
|:| |:| Functional and/or effective connectivity

|:| |:| Graph analysis

|:| |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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