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Global phenology maps reveal the drivers 
and effects of seasonal asynchrony

Drew E. Terasaki Hart1,2,3 ✉, Thảo-Nguyên Bùi1, Lauren  Di Maggio4 & Ian J. Wang1

Terrestrial plant communities show great variation in their annual rhythms of growth, 
or seasonal phenology1,2. The geographical patterns resulting from this variation, 
known as land surface phenology (LSP)3, contain valuable information for the study of 
ecosystem function4,5, plant ecophysiology6–8, landscape ecology9,10 and evolutionary 
biogeography11–13. Yet globally consistent LSP mapping has been hampered by methods 
that struggle to represent the full range of seasonal phenologies occurring across 
terrestrial biomes14, especially the subtle and complex phenologies of many arid and 
tropical ecosystems1,15,16. Here, using a data-driven analysis of satellite imagery to map 
LSP worldwide, we provide insights into Earth’s phenological diversity, documenting 
both intercontinental convergence between similar climates and regional 
heterogeneity associated with topoclimate, ecohydrology and vegetation structure. 
We then map spatial phenological asynchrony and the modes of asynchronous 
seasonality that control it, identifying hotspots of asynchrony in tropical mountains 
and Mediterranean climate regions and reporting evidence for the hypothesis that 
climatically similar sites exhibit greater phenological asynchrony within the tropics. 
Finally, we find that our global LSP map predicts complex geographical discontinuities 
in flowering phenology, genetic divergence and even harvest seasonality across a 
range of taxa, establishing remote sensing as a crucial tool for understanding the 
ecological and evolutionary consequences of allochrony by allopatry.

Plant communities vary widely in their annual rhythms of growth, the 
collective result of the adaptation of plant life cycles to the vast range 
of terrestrial environments1,2,4,15,17. The spatiotemporal patterns that 
this creates, known as land surface phenology (LSP), convey rich eco-
physiological information about the relationship between bioclimate 
and plant function1,6,7,15 and about the modification of that relationship 
by human land use3,18. Robust characterization of these patterns is 
therefore a critical step in understanding the seasonal dynamics of 
Earth’s terrestrial ecosystems and the constraints that those dynam-
ics impose on native species and human activity. Yet the tendency of 
phenological research to focus on scalar phenometrics that assume 
simple annual growth cycles and discrete growing seasons (for exam-
ple, start and end of season)14 has limited our ability to understand 
global LSP diversity, especially in arid and tropical biomes charac-
terized by subtly varying and multimodal phenologies that remain 
poorly understood4,7,15,16. The historical lack of robust remote-sensing 
proxies of photosynthesis has compounded this limitation, relegat-
ing most previous LSP analyses to traditional vegetation indices that 
have limited sensitivity to seasonal phenology in evergreen ecosys-
tems6,19. New remote sensing indices such as near-infrared reflectance 
of vegetation (NIRV)20 and sun-induced (or solar-induced) chlorophyll 
fluorescence (SIF)21 serve as stronger and less biome-sensitive predic-
tors of seasonal variation in plant productivity6,19. Season-agnostic 
analysis of these proxies of ecosystem function can offer globally 
consistent insights into LSP.

As a biological signal of the predominant environmental seasonality 
controlling the phenologies of many species1,9,13,17, the geography of LSP 
offers valuable information for landscape ecology and evolutionary 
biogeography. Spatial variation in seasonal timing can desynchronize 
phenologies and therefore decouple ecological dynamics between 
populations11. This spatial phenological asynchrony can cause allochro-
nic reproductive isolation22—a phenomenon that we term ‘allochrony 
by allopatry’—which can accelerate genetic divergence and, according 
to the asynchrony of seasons hypothesis (ASH)12, even facilitate specia-
tion23. The ASH posits that this is most common in the tropics: whereas 
the phenological cues commonly used by high-latitude species (for 
example, temperature and daylength seasonality) are synchronized 
across broad geographical areas, the cues thought to be used by many 
low-latitude species (for example, seasonal availability of water and 
cloud-attenuated sunlight2,10,16,17,24) can diverge over short geographical 
distances1,11,12,25–28. Crucially, the topoclimatic phenomena purported to 
drive this divergence could even cause seasonal cycles to be out of sync 
between places with similar climatological averages, such that nearby 
sites with a similar habitat could exhibit distinct seasonal patterns in 
potential phenological controls such as temperature, precipitation, 
cloud immersion or solar radiation25–27, a pattern we hereafter refer 
to as isoclimatic phenological asynchrony. This would increase the 
likelihood that spatial phenological asynchrony could occur between 
populations of tropical species despite their characteristically narrow 
climatic niches29, strengthening the case for allochrony by allopatry 

https://doi.org/10.1038/s41586-025-09410-3

Received: 3 January 2024

Accepted: 15 July 2025

Published online: 27 August 2025

Open access

 Check for updates

1Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA. 2The Nature Conservancy, Arlington, VA, USA. 3CSIRO Environment, Brisbane, 
Queensland, Australia. 4Department of Statistics, University of California, Berkeley, CA, USA. ✉e-mail: Drew.TerasakiHart@csiro.au

https://doi.org/10.1038/s41586-025-09410-3
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-025-09410-3&domain=pdf
mailto:Drew.TerasakiHart@csiro.au


134  |  Nature  |  Vol 645  |  4 September 2025

Article
as a contributor to latitudinal and altitudinal gradients in genetic30 
and species diversity31. However, observational and genetic evidence 
for the ASH is scant and mixed11,25,32,33, global terrestrial patterns of 
asynchronous seasonality and phenological asynchrony are mostly 
unknown12,33, and the geography, drivers and implications of allochrony 
by allopatry remain largely unexplored.

We present an innovative analytical framework that uses recent 
advances in remote sensing to provide a global analysis of the diver-
sity and spatial asynchrony of LSP (Extended Data Fig. 1a). First, using 
harmonic regression to model LSP as a location’s long-term average 
annual phenology (hereafter, its phenocycle; Extended Data Fig. 2), 
we estimated a global LSP map from a rigorously quality-filtered 
(Extended Data Fig. 1b), 20-year (2001 through 2020) time series of 
0.05° space-based NIRV imagery34 (this and all other input datasets are 
summarized in Supplementary Table 1). We evaluated this LSP map by 
comparison to identically modelled results derived from space-based 
SIF imagery35, ground-based NDVI imagery36 and flux-tower estimates 
of ecosystem productivity37, then used multivariate analysis to visualize 
the global spatial and temporal diversity of LSP, identifying patterns of 
regional complexity and intercontinental convergence that we inter-
pret in light of previous research on phenology, climate and land cover. 
Next, we calculated a global map of spatial asynchrony of LSP, character-
ized its hotspots and regional drivers, and examined the evidence for 
a latitudinal gradient in isoclimatic phenological asynchrony. Finally, 
using a variety of species datasets, we found that our LSP map predicts 
allochrony by allopatry and its consequent genetic divergence across 
a range of taxa inhabiting asynchrony hotspots.

Phenological diversity
Our global LSP map (Fig. 1) shows strong overall performance worldwide 
(Extended Data Fig. 3) and reveals ecologically interpretable patterns 
from regional to intercontinental scales, demonstrating the broad value 
of a globally consistent, multivariate approach to LSP analysis. When the 
global set of annual phenocycles in this map is rescaled to a common 
amplitude and animated, complex patterns of spatially variable timing 
become starkly apparent (Supplementary Video 1). Decomposition of 
these patterns into empirical orthogonal functions (EOF) shows that 
Earth’s diverse LSP regimes are well explained by a few modes of spati-
otemporal variation. The predominant mode (63.89% of total variation) 
largely reflects the north–south hemispheric summer–winter dipole, 
but embedded within it is a clear signal of intercontinental phenological 
convergence across the five global Mediterranean climate regions and 
portions of their neighbouring drylands as well as a similarly timed signal 
in coastal wet-forest regions in Brazil and in Somalia, Kenya and Tanza-
nia (Extended Data Fig. 4a). The most marked non-hemispheric signals 
embedded in modes two (19.17%), three (8.56%) and four (8.39%) reflect 
the remaining regions comprising the global tropical and subtropical 
monsoon systems38 and a number of agricultural land-use patterns.

Rendering the top three modes as a red–green–blue (RGB) compos-
ite (Fig. 1 and Extended Data Fig. 4b,c) reveals the bulk of global LSP 
diversity (>90% total variability) in great clarity. At the broadest scales, 
intercontinental convergence is instantly visible as a pattern of similar 
LSP colour gradients occurring within similar geographical and climatic 
contexts. One notable example is the convergence between Earth’s 
more strongly seasonal Mediterranean-climate regions (California, 
coastal Chile and the Mediterranean basin)39 where woodland and 
other non-forest areas exhibit phenological maxima in late winter and 
spring (for example, clusters 8 and 9 in Fig. 1), while the predominantly 
montane forests in those regions display delayed phenologies that are 
roughly synchronous with the spring–summer green-up across most 
temperate, high-latitude regions (such as clusters 1–3 in Fig. 1), a find-
ing that corroborates and extends worldwide the phenological ‘double 
peak’ described previously in California40. Numerous other examples of 
intercontinental convergence also emerge, including between the more 

climatically moderate Mediterranean climate regions of South Africa 
and southern and southwestern Australia39 (Extended Data Fig. 5a,b), 
between the eastern rainforests of Madagascar and northern Queens-
land, Australia (Extended Data Fig. 5c,d) and between some regions 
with similar agricultural crops (for example, maize-growing regions 
in the USA and Italy; Extended Data Fig. 5e,f).

At smaller scales, our methodology reveals complex patterns of 
regional phenological heterogeneity that suggest possible environ-
mental controls on LSP (Fig. 1a–d). In some regions, climatic gradients 
are the likely predominant drivers—for example, in southwestern North 
America, our LSP map reveals distinct winter/spring LSP peaks in coastal 
habitats and in high desert that contrast with summer/fall peaks in 
inland and low-desert habitats (Fig. 1a), mirroring the orographically 
forced division between winter-monsoon (that is, Mediterranean) and 
summer-monsoon climates38,39,41. However, the LSP patterns in other 
regions suggest additional drivers—for example, in the Basin and Range 
region (USA), community composition appears to be a key factor42, 
with desert regions with a greater abundance of invasive cheatgrass 
(colour 1 in Fig. 1b; 20.97% annual vegetation, according to recent esti-
mates43) showing an earlier spring onset than less-invaded regions 
(colour 2; 9.39% annual composition; Tukey’s honest significant dif-
ference, P < 0.001). South Florida (USA) presents an example of LSP 
patterns that are probably driven by community composition that is 
tied to topohydrology (Fig. 1c). The distinctions between Everglades 
sawgrass marsh (showing a phenological peak during the winter dry 
season, when water levels are lowest), the wooded wetland region to the 
north and west (showing a quick spring peak that may reflect deciduous 
cypress leaf-out), and areas of drained, upland and mangrove vegetation 
(showing broader peaks during the summer wet season), are consistent 
with regional vegetation maps44 and CO2 exchange studies45,46. Finally, in 
regions in which water and light are the major controls on plant growth47, 
stark LSP discontinuities may indicate differences in ecohydrological 
dynamics, and therefore in water-balance strategies, between differ-
ent vegetation structural types. The double peak of Mediterranean 
forest and non-forest habitats is one example of this (Extended Data 
Fig. 2a). The Amazon may be another. We observe bimodal phenologies 
in forests that contrast sharply with unimodal phenologies in natural 
and anthropogenic non-forest (Fig. 1d) and in some riparian zones 
(Extended Data Fig. 2e). Previous research suggests that these patterns 
could reflect closer phenological tracking of optimal light availability 
in forests of the northern and central Amazon basin, where water stress 
is a less-frequent constraint on growth6–8 compared with in seasonally 
drought-stressed non-forest1,2,8 and seasonally inundated floodplain 
forests8. However, seasonality of tropical plant productivity reflects 
a complex integration of environmental controls that is still poorly 
understood16, so it remains unclear how generally tropical phenologies 
track light except when constrained by water, as theory suggests2,17.

We have thoroughly evaluated the performance of the LSP-fitting 
procedure used to produce these results. We compared our map against 
a priori expectations, both regionally (for example, comparing to the 
double peak previously described in California40; Extended Data Fig. 2a) 
and globally (for example, comparing the unimodality/bimodality in our 
LSP map (Extended Data Fig. 6a) to that described in previous work4). We 
also compared the full LSP map to a 4.3-year time series of independent 
SIF data from Orbiting Carbon Observatory-235 (Extended Data Fig. 6b; 
pixel-wise median R2 between fitted phenologies, 0.855), after assess-
ing the seasonality of interpolated portions of that SIF dataset against 
a second SIF dataset (Extended Data Fig. 6c). We then compared the 
LSP map to identically modelled phenocycles derived from two global 
time-series datasets: the normalized difference vegetation index (NDVI) 
from ground-based phenology cameras in the PhenoCam network36 
and gross primary productivity (GPP) from eddy covariance flux tow-
ers in the FLUXNET2015 network37. Our LSP map shows strong overall 
agreement with the seasonal signals in both datasets (Supplementary 
Tables 2 and 3), although with noticeably lower average agreement in 
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semi-arid and seasonally dry biomes than in other ecosystems (Extended 
Data Fig. 6d,e). We attribute this both to the high interannual variability 
of productivity in these biomes48 (especially Australia15; Extended Data 
Fig. 2b), which decreases the likelihood that the temporal patterns of 
shorter NDVI and GPP time series are characteristic of the long-term 
average phenologies that we modelled (Extended Data Fig. 6d,e), and to 
the phenologically divergent land-cover mosaics that can occur there5,40, 
which decrease the likelihood that the annual phenology of the vegeta-
tion within a camera’s field of view or a tower’s footprint matches the 
spatially averaged annual phenology of the mixture of vegetation within 
a coarser remote sensing pixel.

Phenological asynchrony
After excluding agricultural pixels to minimize anthropogenic influ-
ence3, we estimated each pixel’s spatial phenological asynchrony as the 
spatial rate of phenological divergence within its surroundings—that 

is, the slope of the relationship between the geographical and pheno-
logical distances between the pixel and all its neighbours (Extended 
Data Fig. 7a). The phenological asynchrony maps resulting from this 
calculation show that high asynchrony occurs in regions in which the 
predominant constraints on plant growth are expected to be availability 
of light and water, rather than temperature47, perhaps reflecting the 
fact that the seasonal timing of these factors is more susceptible to 
topographic modulation and that their ecophysiological importance 
varies more as a function of vegetation structure (Fig. 2a). Within that 
overarching pattern, we find phenological asynchrony hotspots con-
centrated not only in tropical montane regions, as posited by the ASH, 
but also in subtropical Mediterranean and semi-arid climate zones—a 
finding that is consistent across neighbourhood radii (50, 100 and 
150 km) both within the NIRV and SIF datasets (Extended Data Fig. 7b) 
and between them (Extended Data Fig. 8).

To understand what might generate this pattern, we used a 
random-forest modelling framework to predict LSP asynchrony as a 
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Fig. 1 | Global LSP mapping reveals intercontinental convergence and 
complex regional gradients. The map was coloured by plotting the top three 
modes of the EOF analysis as an RGB composite. These modes, which explain 
more than 90% of the phenocycle variation in our global NIRV time series, were 
transformed across the intertropical convergence zone (ITCZ; dotted line 
straddling the equator) before composition, to facilitate interhemispheric 
comparison. The line plots (top right) depict annual phenocycles (January–
January north of the ITCZ; July–July to the south) for nine clusters derived from 
the global set of fitted phenocycles, coloured by each cluster’s median value in 
the colour composite. Regional maps (a–d) are paired with phenocycle plots 
coloured by regionally constrained clustering. Complex gradients appear to 
reflect patterns of topoclimate, ecohydrology and vegetation structure. a, In 
California and Arizona, USA, and Sonora and the Baja California peninsula, 
Mexico, a strong gradient aligns with the orographically driven division 

between Mediterranean winter-monsoon regions (colours 1 and 2) and summer- 
monsoon regions (3 and 4)41. b, In the Great Basin, USA, we recover a significant 
signal of the accelerated spring growth of cheatgrass (1)42 relative to sagebrush 
(2) and montane (3) vegetation (one-way analysis of variance (ANOVA), 
P < 5 × 10−324, with clusters of n = 4,629, 904 and 4,891 pixels; two-tailed Tukey’s 
honest significant difference, P = 5.71 × 10−12 in both cases). c, In South Florida, 
USA, we observe starkly contrasting phenologies between Everglades sawgrass 
marsh (1), wooded wetland (2) and upland, drained and mangrove ecosystems 
(3). d, In the Amazon Delta region, Brazil, we observe unimodal phenologies in 
non-forest areas (1) that are closely juxtaposed with bimodal phenologies in 
forest (2 and 3), whether non-forest is naturally occurring (for example, the 
northwestern patch is Guianan savanna) or anthropogenic (for example, the 
southern band lies within the arc of deforestation).
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function of its potential environmental drivers. We calculated asyn-
chrony maps for the seasonality of minimum and maximum tempera-
ture, precipitation, climate water deficit and cloud cover, all of which 
revealed strongly structured geographical patterns that were similarly 
insensitive to neighbourhood size (Extended Data Fig. 7b). We also 
included four other potential drivers: a measure of topographic com-
plexity, to allow for the latitude–topography interactions expected 
under the ASH12; an index of the spatial variability in vegetation struc-
ture, to allow the model to reflect LSP divergence between distinct 
vegetation types1,40; and indices of the frequency of fire and of the 
extent of land use and non-fire-driven land cover change, to account 
for potential human contribution to LSP asynchrony patterns. We 
constructed a random forest for each combination of neighbour-
hood radius, LSP dataset, and inclusion or exclusion of geographi-
cal coordinates (to check the sensitivity to the explicit estimation of 
spatial process). Despite the local-scale neighbourhood sensitivity 
of our asynchrony metric (Extended Data Fig. 7b), we found that our 
overarching modelling results were largely insensitive to all three of 
these factors (Extended Data Fig. 9a) and showed a strong overall 
ability to predict patterns of phenological asynchrony (R2 = 0.56 for 
the 100 km, NIRV-based, coordinate-included model; Extended Data 
Fig. 9a,b shows R2 values for all models and a map of standardized 
prediction errors).

Two forms of asynchronous seasonality consistently emerged as the 
primary drivers of LSP asynchrony: precipitation asynchrony (PA) and 

minimum temperature asynchrony (MTA). To understand the regional 
variability of drivers, we calculated the local influence map of each 
covariate using shapley additive explanations (SHAP) values (Extended 
Data Fig. 9c), then summarized the maps of the two primary drivers, 
within LSP asynchrony hotspots (pixels ≥ 85th percentile), as a normal-
ized difference of absolute SHAP values (Fig. 2b). These results suggest 
that a handful of explanatory mechanisms underlie the major facets of 
the global pattern of LSP asynchrony. First, PA is the clear driver of asyn-
chrony across the divisions between Mediterranean winter-monsoon 
regions and neighbouring continental or summer-monsoon climates38 
(Fig. 1a and Extended Data Fig. 2b), whereas PA and MTA are similarly 
important drivers within Mediterranean climate regions. Second, the 
drivers of tropical montane LSP asynchrony appear to vary regionally, 
from PA (for example, the central tropical Andes, the Brazilian Mata 
Atlântica, the Afromontane, eastern Madagascar and the Australian 
wet tropics) to MTA (for example, the northern and southern tropi-
cal Andes, the Guiana Shield) to codominance in some regions (for 
example, southern Central America). The unexpected importance 
of MTA in tropical montane regions may indicate that temperature 
seasonality exerts phenological control within certain biomes, such as 
at higher elevations1, or even that it has a broader but little-recognized 
role in the control of tropical tree phenologies16,24,49, but it may also 
simply indicate omitted variables or complex interactions that are 
not resolved by our analyses (for example, the interaction of variable 
insolation with variable thickness of cloud cover24). Finally, LSP asyn-
chrony is low across temperate continental climates, where harsh 
winters synchronize phenologies47 even when precipitation regimes 
are spatially variable50 and PA is high (Extended Data Fig. 7b), and also 
across many tropical and subtropical regions of low topographic relief, 
where phenologies are broadly synchronized by year-round warmth 
and by spatially expansive precipitation regimes unaffected by oro-
graphic phenomena7. Amazonian forest–savanna ecotones—includ-
ing in the northwest (that is, the Llanos), the north (that is, Guianan 
savanna) and the south and southeast (that is, the Cerrado, and the 
convolved pattern of land clearance in the arc of deforestation)—are a 
major exception that may relate to the divergence between light-driven 
and water-driven phenologies1,8,17.

The logic of the ASH suggests that the phenological asynchrony of 
tropical montane regions could be caused by spatially variable timing 
of the topoclimatic phenomena that control seasonal fluctuations in 
precipitation, cloudiness and available solar radiation—an idea sup-
ported by many detailed, regional climatologies26–28. This implies that 
tropical phenological asynchrony could occur not only due to spatial 
differences in climate but also due to spatial differences in the seasonal 
timing of similar climates. We refer to such a pattern as isoclimatic 
phenological asynchrony, and we test for it by examining whether 
the strength of the relationship between climatic and phenological 
distances between sites (βc), assessed within global high-asynchrony 
regions, is positively correlated with absolute latitude. Despite the 
spatial variability in this relationship (Fig. 3a), we find strong overall 
evidence for a latitudinal gradient (Fig. 3b,c; P < 0.001). This lends 
support to the potential evolutionary importance of allochrony by 
allopatry: it suggests that allopatric populations of tropical species may 
experience stronger average allochronic isolation than allopatric popu-
lations outside the tropics, owing to the higher likelihood that asyn-
chronous seasonality occurs between sites within even narrow climatic 
niches (for example, between similar montane rainforests with seasonal 
precipitation patterns that are similar in shape but are temporally out 
of phase). If its physiographic basis does indeed persist over long time-
scales12, then this phenomenon should be expected to drive genetic 
differentiation and, therefore, to serve as a mechanism contributing to 
latitudinal and altitudinal gradients of genetic30 and species diversity31, 
as proposed by the ASH12. This could be compounded by other factors 
believed to make tropical montane species more prone to allopat-
ric isolation and divergence: characteristically narrow topoclimatic 
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distributions29, fragmented and isolated climates31 and low population  
densities51.

Allochrony by allopatry
The evolutionary implications of our results depend on the ability of LSP 
to serve as a correlate for the climatic and resource seasonality patterns 
that control the reproductive cycles of a wide range of species1,9,13,17,24. 
In this capacity, remote sensing of proxies for organismal phenology 
could have an underappreciated role in improving our understanding of 
spatiotemporal evolutionary dynamics. Using a variety of species-level 
datasets, we demonstrate that our LSP map is, indeed, a reliable predic-
tor of phenological and genetic signals of reproductive allochrony by 
allopatry across disparate taxa.

First, using timestamped flower observations from iNaturalist52, we 
found that our LSP dataset predicts allochrony by allopatry across a 
wide range of native plant species. To focus on species most likely to 
exhibit the sharp phenological discontinuities expected under the 
ASH—as opposed to the gradual spatial change in bloom date that might 
occur along altitudinal or latitudinal gradients—we derived a subset of 
taxa with significantly non-unimodal histograms of range-wide flower-
ing dates (859; 11.8%) from the full number of usable iNaturalist taxa 
(7,250). As expected, these non-unimodal taxa concentrate in regions 
where temperature seasonality is not the predominant control on plant 
growth47, allowing life histories to spread across much of the calendar 
year (Extended Data Fig. 10). We dropped 49 taxa that had insufficient 
data for model fitting, as well as 196 taxa with extremely broad latitu-
dinal distributions that would produce significant but uninteresting 
results reflecting only the opposite seasonalities of the northern and 
southern hemispheres. We then used multiple matrix regression with 
randomization (MMRR)53 models to test the remaining 614 taxa for a 
signal of allochrony by allopatry: a significant correlation between flow-
ering date distances and the phenological distances calculated from our 
LSP map, independent of geographical and environmental distances. 
Despite the noise inherent in using opportunistic observation dates 
to represent flowering periods, we found that almost one in five taxa 
(106; 17.3%) shows evidence of geographical flowering-time variation 
that is explained by LSP asynchrony (43, or 7.0%, after false-discovery 
rate correction; Supplementary Table 4). Many of these taxa exhibit 
patterns of allochrony by allopatry that show marked agreement with 
stark discontinuities in our LSP map (Fig. 4a).

Next, using data collected from the few published studies of the 
ASH, we found that our LSP map not only recapitulates the genetic 
divergence previously attributed to phenological asynchrony in an 
eastern Brazilian amphibian but also yields convergent results in a 
sympatric bird. First, we reanalysed data from the only genomic ASH 
study of which we are aware25, which reported isolation by PA in a toad 
(Rhinella granulosa) found in eastern Brazil—a region in which we 
also document strong, precipitation-driven LSP asynchrony (Fig. 2b). 
Substituting our LSP data for their PA data recovers an identical pat-
tern of genetic isolation by asynchrony (MMRR LSP-distance coef-
ficient = 0.332, P < 0.001), visible in the tight agreement between 
clustering of the sampling locations by their genetic data and cluster-
ing by their NIRV phenocycles (Fig. 4b). Next, using an equivalent analy-
sis, we found similar results (MMRR LSP-distance coefficient = 0.665, 
P < 0.001) and symmetric geographical structure in the only sympatric 
species included among other available ASH genetic studies, the lesser 
woodcreeper, Xiphorhynchus fuscus (Furnariidae)32 (Fig. 4b). This sug-
gests that our remote sensing approach can detect little-recognized 
biogeographical patterns that influence evolutionary dynamics across 
disparate taxa.

Finally, we found evidence that allochrony by allopatry can also have 
practical and economic ramifications in other domains, such as agri-
culture. For example, in contrast to most coffee-producing nations, 
Colombia is known to have two harvest seasons, fully six months out 
of sync: some regions harvest from September to December, others 
from March to June, and still others have a principal harvest in one of 
these seasons and a minor harvest during the other54. A map of clas-
sified harvest seasonalities produced by the National Federation of 
Coffee Growers of Colombia (Fedecafé) reveals a complex geographi-
cal pattern, including not only latitudinal structure (the September–
December seasonality is predominantly northern), but also orographic 
structure—that same September–December seasonality extends all the 
way south along the eastern slope of the Andes. Using sampling points 
digitized across a previously published version of the Fedecafé map54, 
we show that spatial variability in our LSP dataset mirrors the spatial 
variability in fruiting phenology documented by Fedecafé (Fig. 4c) and 
that clustering of our LSP dataset significantly matches the official 
harvest season categories (P < 0.001). The pronounced phenological 
discontinuity across the easternmost range of the Andes causes some 
sites that are separated by as little as 60 km linear distance to be as out 
of sync as if they were separated by 60 latitudinal degrees (Extended 
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value of βc, based on an ensemble of regional MMRR models predicting 
phenological distance as a function of climatic difference and geographical 
distance. b, The ensemble results (one point per high-asynchrony region; 

n = 429 regions) reveal a significant, positive relationship between the  
mean βc and the mean absolute latitude (ordinary least squares regression 
slope = 0.00612, P = 9.405 × 10−30), indicating a latitudinal gradient in 
isoclimatic phenological asynchrony. c, A two-tailed Monte Carlo analysis  
of the ensemble results indicates that the slope of the latitudinal gradient is 
significantly larger in magnitude than slopes derived from 1,000 permuted 
datasets (Ppermut ≪ 0.001). Freq., frequency.
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Data Fig. 2c). This pattern may reflect transmontane differences in the 
seasonal patterns of precipitation and cloud-attenuated sunlight that 
result from the orographic blocking of prevailing winds27,28, a topocli-
matic phenomenon that could have a broadly important role in tropical 
montane biogeography.

Conclusions
Annual rhythms of climate and resource availability control the phenolo-
gies of many plant and animal taxa. These rhythms can differ across 
geographical space, sometimes substantially. Where this happens, 
allochrony by allopatry can occur because ecological processes in dif-
ferent locations can be decoupled not only by the physical distance 
between them but also by the temporal displacement between their 
asynchronous seasonal and phenological cycles. Our work demon-
strates that globally consistent, biome-agnostic remote sensing of 
LSP, using a minimal modelling framework that avoids the complica-
tions arising from concern with discrete growing seasons, thresholded 
phenometrics and spatially variable amplitudes, can provide a crucial 
tool for studying this phenomenon. This innovation provides impor-
tant insights into the global diversity and intricate heterogeneity of 
terrestrial phenologies—particularly in the tropics, where most LSP 
algorithms suffer from a tacit ‘temperate phenological paradigm’15,16 
that contributes to a persistent phenological knowledge gap10,13,24. Our 
approach could also deepen insights into the phenological shifts hap-
pening under climate change13,16, including phenological anomalies 
caused by increasingly common extreme weather. Modelling LSP as a 
long-term average phenocycle has the inherent limitation of excluding 

these deviations, but also the benefit of providing a multivariate baseline 
for measuring them, which could help to identify changing patterns of 
landscape phenology and allochrony by allopatry that can have cas-
cading effects on species interactions and resource availability10,13,24, 
animal movement9, and ecosystem fluxes and phenology–climate  
feedbacks4,5.

Our study also offers perspectives and insights across a wide range 
of domains. For example, although we have focused on terrestrial eco-
systems, allochrony by allopatry may have important roles in marine 
and freshwater ecosystems too. The interactions of currents, strati-
fication, nutrient gradients and atmospheric and coastal influences 
could create three-dimensional patterns of allochrony by allopatry in 
marine environments55, and spatial variation in the seasonal patterns of 
temperature, hydroclimate and nutrient inputs could cause allochrony 
by allopatry across the complex geographies of lakes and drainage 
networks56. Our work not only adds to a growing body of evidence that 
allochrony by allopatry can cause reproductive isolation and genetic 
divergence25,32,33 but also suggests avenues for understanding the key 
life history and landscape parameters that potentiate this. Species 
with lower dispersal ability, such as the amphibian and understory 
specialist bird that we analysed here, may have phenologies that are 
more tightly controlled by local resource availability and may therefore 
be predisposed57. Comparisons between regions could reveal whether 
divergence is facilitated by isoclimatic phenological asynchrony, which 
should increase the likelihood of allochrony by allopatry within even 
narrow climatic niches, or by reduced interannual phenological vari-
ability, which should limit long-term gene flow leakage and therefore 
strengthen reproductive isolation.
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Fig. 4 | Remote sensing predicts allochrony by allopatry across global 
hotspots of phenological asynchrony. a, Example taxa (Menodora scabra, in 
southwestern North America; Satyrium parviflorum, in South Africa) display 
flowering asynchrony based on iNaturalist52 observations that is predicted by 
spatial variation in our LSP map. Maps of observation locations and line plots of 
the phenocycles at those locations are both coloured by k-means clustering of 
the phenocycles (k = 2), and the hash marks on the line plots indicate the day of 
year of each iNaturalist flowering observation. b, Data from R. granulosa25 and 
sympatric X. fuscus32 show congruent results, attributing genetic divergence  
to allochrony by allopatry across a region of precipitation-driven phenological 
asynchrony in eastern Brazil. Sampling-site maps and line plots of the 
phenocycles at those sites, coloured by k-means clustering (k = 2) of genetic 
data (left), display close agreement with results coloured by phenocycle 

clustering (right). c, Coffee (Coffea arabica) harvest seasons, mapped by 
Fedecafé54, exhibit a complex pattern of allochrony by allopatry. Sampling 
points, coloured by Fedecafé harvest season categories, are mapped over an 
RGB composite of LSP variability, derived from EOFs (left). This harvest season 
mapping shows broad agreement with geographical variation in our fitted 
phenocycles (right). Each harvest season category has a colour-matched plot, 
depicting the median line and 10th and 90th percentile ribbons across all 
sampling points and underlined by thick bars indicating the official harvest 
season months. Species images were derived from iNaturalist photos taken by 
M. Groeneveld (M. scabra; CC BY 4.0), J. Ponder (S. parviflorum; CC BY 4.0) and 
M. Podas (X. fuscus; CC BY-SA 4.0); adapted from ref. 64 (CC BY 4.0); or taken by 
M. Burrows (C. arabica).

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by/4.0/


Nature  |  Vol 645  |  4 September 2025  |  139

Finally, it remains to be determined whether genetic divergence under 
allochrony by allopatry facilitates speciation and therefore contributes 
to broad-scale patterns of species diversity, as originally posited by the 
ASH. Phenological prezygotic isolation is widely recognized as a mecha-
nism of reproductive isolation22,23, and its instrumental role in some of 
the best-studied examples of purported sympatric speciation23,58,59 raises 
the question of whether ‘allochrony by parapatry’ might be involved in 
the speciation of endemics restricted to habitats where our map often 
shows stark phenological discontinuities across ecotones—including 
Amazonian floodplains60, mangroves61 and other wetlands. Comprehen-
sive phylogeographic work will be needed to determine general patterns, 
but the strong concordance of hotspots of phenological asynchrony with 
hotspots of continental biodiversity and endemism39,62,63, including not 
only tropical montane regions but also Mediterranean and semi-arid 
floristic regions, is highly consistent with the notion of allochrony by 
allopatry as an important macroevolutionary mechanism.
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Methods

Overview of software, data and workflow
We conducted our LSP mapping workflow using Google Earth Engine 
(GEE) (v.0.1.404 or later)65 and performed additional analyses using 
Python66 with a set of core scientific packages (numpy67, shapely68, 
pandas69, geopandas70, rasterio71, xarray72, rasterstats73, dask74, scipy75, 
scikit-learn76, statsmodels77 and matplotlib78). All of the datasets used 
in our study are summarized in Supplementary Table 1, and our entire 
mapping workflow is summarized in Extended Data Fig. 1a.

LSP datasets
We used GEE to model LSP in two independent time series of remote 
sensing indices that are strong correlates of seasonal variability in plant 
productivity—NIRV, an index of the fraction of incident near-infrared 
light that is reflected by vegetation20, and SIF, an index of the quantity 
of incident photons that are absorbed by chlorophyll and re-emitted 
as fluorescence21. We used a 20-year time series of MODIS-derived NIRV 
data (daily data from 2001 to 2020, subsampled to every 4 days for com-
putational tractability) as our main dataset (the full workflow diagram is 
shown in Extended Data Fig. 1a). Following best practices for estimation 
of patterns at the annual timescale, we chose the MCD43A4 v061 data-
set34, a 16-day temporal composite79 of nadir bidirectional reflectance 
distribution function (BRDF)-adjusted reflectance80. We used the ver-
sion of these data that is publicly available in the GEE data catalogue. 
We did not carry out topographic correction because the scale of our 
analysis (0.05°; ~5.5 km) is sufficiently coarse that spatial averaging 
is expected to remove topographic bias80,81. We used only pixels with 
quality values of ≤3 (that is, pixels for which full or magnitude-based 
BRDF inversions were successfully fitted82) for both the red and NIR 
bands (bands 1 and 2), aggregated to our target analytical resolution 
of 0.05° (hereafter, target resolution) using the arithmetic mean. We 
calculated NIRV, as described previously20, as the product of the NDVI 
and total NIR reflectance. NIRV values of ≤0, assumed to be invalid20, 
occurred predominantly in high-albedo scenes (for example, treeless 
snow cover; Extended Data Fig. 2d), where productivity is assumed to 
be minimal, so they were clamped to the minimum positive NIRV value 
observed during a pixel’s 20-year time series.

To evaluate our NIRV maps, we ran some of our main analyses identi-
cally but using a global, gridded SIF dataset35. This is a roughly 4.3-year 
(September 2014 to January 2019), 0.05°, spatially contiguous time 
series dataset, interpolated by artificial neural network (ANN) from 
the spatially discontiguous SIF data measured along Orbiting Carbon 
Observatory 2 (OCO-2) orbital swaths. Rigorous internal and external 
validation of this dataset showed that it accurately captured the global 
patterns present in the original OCO-2 retrievals and that it explained 
81% of the variation in contemporaneous chlorophyll fluorescence 
imaging spectrometer aerial measurements taken beneath OCO-2 
orbits and 72% of the variation in measurements not beneath orbits35. 
We downloaded this dataset from the Distributed Active Archive Center 
for Biogeochemical Dynamics83 then ingested it into GEE.

Given that the SIF dataset interpolates across orbital gaps but the 
paper describing the dataset did not explicitly validate the seasonal 
phenological patterns of the interpolated data, we assessed the 
observed seasonality in the interpolated, orbital-gap data against the 
observed seasonality in another, coarser-resolution SIF dataset col-
lected by the TROPOspheric Monitoring Instrument (TROPOMI)84,85. 
To do so, we extracted SIF time series from the ANN-interpolated data-
set at a sample of random points drawn within OCO-2 orbital gaps in 
three tropical realms (the Neotropics, tropical Africa, and Indo-Pacific 
and tropical Australia; Extended Data Fig. 6c) then compared those 
values to contemporaneous time series extracted from the TROPOMI 
SIF data. We used tropical regions for this assessment because their 
lack of a pronounced thermal winter creates the greatest possibility 
that seasonality there exhibits spatially varying patterns that are not 

accurately recovered by spatial interpolation from orbital-swath data. If 
the interpolated dataset adequately captures the true seasonal patterns 
of SIF within OCO-2 orbital gaps then its time series should explain the 
bulk of the variation in the TROPOMI time series, and it does (R2 = 0.89; 
Extended Data Fig. 6c).

Data filtering
To exclude locations where our harmonic regression-based LSP map-
ping methodology (see the next section) would return inaccurate 
results, we used an extensive filtering pipeline that removed invalid 
land cover, pixels with multiple types of data deficiency and pixels with 
statistically insignificant LSP regressions. The pixels removed from 
analysis by each of the filtering steps described below are mapped and 
summarized in Extended Data Fig. 1b.

For land-cover filtering, we used the GEE data catalog asset for 
MCD12C1.06186, a MODIS product estimating annual, global land 
cover at our target resolution. We used the Annual International 
Geosphere-Biosphere Programme’s (IGBP) classification scheme (land 
cover type 1). To avoid low-quality data originating from non-target land 
cover, we excluded data from all pixels with >10% invalid land cover—
including urban and built-up land, permanent snow and ice, barren land 
and water bodies (categories 13, 15, 16 and 0)—for all years within which 
that classification was assigned. Next, we retained pixels with any other 
land-cover classifications provided that they never switched between 
agricultural (categories 12 or 14) and non-agricultural (categories 1 to 11),  
to avoid fitting phenocycles to the noise resulting from abrupt changes 
between natural phenologies and those that are deliberately altered 
by human management (for example, irrigation). We retained pix-
els where land-cover assignment changed across the time series but 
was either always agricultural or always non-agricultural because:  
(1) spurious signals of change between natural land-cover types are 
common in regions with large, climatically driven interannual variation 
in plant productivity or where the actual land cover straddles categori-
cal boundaries and challenges classification algorithms (for example, 
woodland, savanna and semi-arid biomes); (2) actual land-use and 
land-cover change (LULCC) on the ground is often too subtle to register 
a change in remotely sensed land-cover maps (for example, selective 
logging), even when it registers a clear signal in continuous metrics such 
as NIRV (Extended Data Fig. 2a); and (3) we only expected other forms 
of LULCC (for example, deforestation) to affect our modelling results 
in regions where different land-cover types exhibit different natural 
phenologies in response to the same broad bioclimatic controls, in 
which case pixels subject to LULCC should generate model fits that 
are intermediate to the phenocycles typical of the before and after 
land-cover types, introducing some noise into our map but neither 
preventing interpretation of its overarching patterns nor invalidating 
significant statistical results.

While the LSP of agricultural regions is of interest in many contexts, 
anthropogenic LSP patterns caused by irrigation and other intensive 
land management practices3 could confound our phenological asyn-
chrony analyses, which focus on the climatic drivers and evolution-
ary implications of longstanding, naturally occurring LSP gradients. 
Because of this, we used a stricter masking procedure for all datasets 
used to calculate LSP asynchrony maps and to run asynchrony-related 
analyses, omitting data from all agricultural pixels (IGBP categories 12 
and 14; Extended Data Fig. 1b).

To preclude poorly fitted LSP regressions that could cause spurious 
results, we removed any target-resolution pixels with data that did 
not satisfy a set of strict non-missingness criteria. First, we removed 
any pixels whose LSP time series had >50% missing data, a simple step 
to remove sites with data dropout because of substantial cloud con-
tamination or MODIS quality control problems. Next, we removed 
any pixels without at least 10% monthly mean data availability in every 
month of the year. Finally, owing to a tendency for the harmonic regres-
sion procedure (described below) to interpolate spurious second LSP 
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peaks into extended, seasonally repeating periods of missing data (for 
example, during high-latitude winters, when Terra and Aqua overpasses 
occur outside daylight hours for numerous weeks), we removed any 
pixels for which the binary time series of data availability (0 = missing 
data, 1 = data available) had a Pielou’s evenness87 of less than 0.8. We 
calculated Pielou’s evenness, J′ = H′/H′max, using H′ (Shannon’s diversity 
index88) calculated with 12 values, each value being a monthly average 
proportion of non-missing 4-day-interval data over the 20-year NIRV 
time series. Manual inspection of fitted phenological patterns after 
applying this series of filtering steps confirmed successful removal of 
locations that would otherwise produce spurious results. These last 
two steps removed all locations north of roughly 60° (Extended Data 
Fig. 1b) because the lack of winter daylight during satellite overpass 
creates long, seasonally repeating stretches of unavailable data. This 
is also a known complication for other remote-sensing products (for 
example, MOD44B.061 Vegetation Continuous Fields89), but it does not 
affect our major findings because the same orbital physics that causes 
this issue also produces strong, zonally consistent temperature and 
photoperiod control over annual phenologies at these latitudes and, 
therefore, limited potential for phenological asynchrony.

Finally, we used the harmonic regression procedure described below 
not only to calculate characteristic annual LSP patterns but also to 
estimate the significance of those patterns and filter out pixels with 
insignificant regression results, using a Monte Carlo framework. To do 
this, for each pixel in our global NIRV dataset, we randomly permuted 
the original LSP time-series image stack, scrambling any true seasonal 
signal, then ran the harmonic regression and stored an image of the R2 
values at all pixels. Next, we calculated from all of the stored R2 images 
a single summary image of empirical P values indicating, for each pixel, 
the proportion of permutations for which the permuted time series’ R2 
values exceeded the R2 value from the unpermuted harmonic regres-
sion. We ran this harmonic regression permutation test using 20 permu-
tations at every pixel globally (because of computational limitations), 
then filtered out any pixels with an empirical P ≥ 0.05.

Modelling of LSP
We used harmonic regression to model the long-term average annual 
LSP pattern (that is, phenocycle) of every pixel in the global, filtered 
NIRV and SIF datasets. In our model each pixel’s full time series is pre-
dicted as a function of time as:

y β β t β t β t β t β t ϵ= + + sin( ) + cos( ) + sin( ) + cos( ) + ,t0 1 ann 2 ann 3 sem 4 sem

where y is either the SIF or NIRV time series, t is the linear time compo-
nent (days from the start of the time series), and tann and tsem are circular 
time expressed in annual (ann) and semiannual (sem) frequencies (that 
is, the day of year expressed in radians, where 2π radians corresponds to 
the last day of the year for tann and to the middle and last days of the year 
for tsem). We then retained all of the resulting coefficient maps except 
βt (the trend), yielding a stack of five coefficient maps that represents 
the detrended, long-term, characteristic annual LSP pattern at each 
pixel globally.

We chose harmonic regression because it is a simple, widely used 
and clearly interpretable approach to time-series analysis90, and 
because it would enable us to characterize the long-term average 
annual behaviour at all terrestrial locations. Our regression formu-
lation is algebraically equivalent to detrending the full 20-year time 
series, then running a Fourier transform that includes both annual 
and semiannual frequency components91. We designed a number of 
the data-filtering approaches described above to ensure against the 
spurious interpolation into seasonally repeating data gaps that could 
otherwise be caused by this method. We chose to include both the 
annual and semiannual frequencies in the harmonic regression to strike 
a balance between model complexity and overfitting. We expected 
that complex annual LSP patterns would occur in locations that have 

bimodal seasonal precipitation patterns (that is, two rainy seasons)50 
and no winter freeze47. Indeed, preliminary analysis revealed numer-
ous regions with stronger bimodal than unimodal annual LSP patterns 
(that is, regions containing many pixels whose R2 values were higher 
in semiannual-only harmonic regression models than in annual-only 
models). The linear combination of annual and semiannual harmonic 
regression components is complex enough to represent annual LSP 
curves that are unimodal, evenly bimodal (two equal peaks and troughs) 
or unevenly bimodal (featuring major and minor peaks and troughs), 
but not more complex, and therefore avoids overfitting by excluding 
unfounded higher frequencies90.

While frequency-specific phase and amplitude estimates could be 
recovered from the fitted coefficients of our models, their compara-
tive interpretation across such a wide range of phenological patterns 
would be difficult. Thus, for all downstream analysis and visualization, 
we instead use Euclidean distances and multivariate statistics calcu-
lated directly on the fitted phenocycles, which can be calculated as 
the multiplication of a pixel’s fitted harmonic regression coefficients 
with the 1-year matrix of daily time values expressed in linear time and 
in annual and semi-annual cyclical time. Extended Data Fig. 2a–d pairs 
multivariate visualization (methods described below) with demonstra-
tions of the phenocycle-fitting procedure in various test regions, and 
Extended Data Fig. 2e shows a similar visualization screenshotted from 
the GEE app that we created for public exploration of our results (the 
link to which is provided within the GitHub repository for this project; 
https://github.com/erthward/phen_asynch, https://doi.org/10.5281/
zenodo.15671259)92.

Evaluation of LSP mapping
We first evaluated the annual NIRV LSP map by calculating and inspect-
ing a map of R2 values between the fitted NIRV and SIF phenocycles at 
all pixels (Extended Data Fig. 6b). We also checked the distribution of 
unimodal and bimodal phenologies against prior studies. To do this, 
we min–max scaled each pixel’s phenocycle to the [0, 1] interval and 
rotated it to start at its minimum value (to avoid problems arising 
from phenocycle peaks that straddle the start of the calendar year). 
We then extracted the heights of each phenocycle’s peaks, using the 
‘find_peaks’ function in the ‘signal’ module of the Python package 
scipy (v.1.13.0)75, and used the absolute difference of those heights 
as an indicator of where a pixel lies on a spectrum between perfectly 
bimodal (0: indicating two peaks of equal height) and unimodal  
(1: assigned to phenologies having only a single peak). We mapped this 
index (Extended Data Fig. 6a), then visually compared it to previously 
published depictions of the global distribution of regions with one 
versus two growing seasons (see figure 3 of ref. 4).

We also evaluated the fitted phenocycles for both LSP datasets 
(NIRV, SIF) by comparison with average phenocycles fitted identically 
to time series of PhenoCam36 NDVI and FLUXNET201537,50 GPP. For the 
PhenoCam analysis, we used a combination of the R93 package pheno-
camapi (v.0.1.5)94 and custom Python code to download all available 
(as of 5 March 2025) 3-day summary NDVI datasets from all cameras 
and regions of interest (ROIs; masked areas of uniform vegetation 
within a camera’s field of view, which are used to generate separate 
time series datasets). We used NDVI because its phenological signal, 
which can diverge from that of the green chromatic coordinate in some 
systems36, provides a better comparator to our NDVI-derived NIRV 
data. We used the 3-day summaries because they have reduced noise, 
and we analysed the 75th-percentile NDVI summary values to strike a 
reasonable trade-off between the tendency of higher-percentile values 
to be less noisy under variable lighting conditions and the risk that 
very high percentiles can cause outlier influence95. We dropped any 
camera sites that PhenoCam reports as belonging to any of the invalid 
IGBP land cover classes that we filtered out of our LSP analysis (urban 
and built-up land, permanent snow and ice, barren land and water 
bodies) or as being agricultural (because agricultural management 
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could cause an entirely different phenology within a camera’s field 
of view than the spatially averaged phenological signal reflected in 
our LSP map), leaving a total of 368 camera sites eligible for analysis. 
Before fitting a harmonic regression for each site, we removed outliers 
from each of the site’s ROI datasets (using the outlier flag provided by 
PhenoCam), then combined all datasets by averaging each day’s values 
across all ROIs to approximate the integrated land cover signal in our 
LSP dataset at that site. We then used the same harmonic regression 
model used in the LSP-fitting procedure described above to calculate 
a set of five coefficients describing the detrended, average annual 
NDVI phenology for a site, and from those coefficients performed 
matrix multiplication to recover the fitted characteristic annual NDVI 
phenocycle for each site. Finally, for each site, we calculated the R2 
values between the site’s characteristic annual NDVI phenocycle and 
the LSP phenocycle corresponding to the site (that is, the pixel where 
the camera is located or, if that pixel is masked in our LSP dataset, 
the nearest valid pixel within a two-pixel-wide box that surrounds 
it). We summarized this evaluation procedure across all camera sites 
by producing, for each LSP dataset: (1) a scatter plot of the LSP-NDVI 
R2 values plotted on the Whittaker biomes96, to depict bioclimatic 
patterns in evaluation performance; and (2) a scatterplot comparing 
LSP-NDVI R2 values to NDVI time series lengths, to depict the relation-
ship between camera data availability and evaluation performance 
(Extended Data Fig. 6d).

For the FLUXNET2015 comparison, we manually downloaded all 
datasets available at the time of access (11 October 2021), then, as with 
PhenoCam, dropped all flux tower sites reporting invalid and agricul-
tural land cover types, yielding 170 valid GPP datasets for analysis. 
Before fitting a harmonic regression to each dataset, we first removed 
all datapoints with a daily quality value of <0.7 (that is, with <70% 
measured or good-quality gap-filled data contributing to their daily 
aggregated values). We then used the same methods as described for 
the PhenoCam NDVI comparison above to fit a harmonic regression, 
predict a characteristic annual time series, calculate R2 values between 
the annual time series and those from their closest available LSP pixels 
(up to 2 pixels distant, otherwise a tower’s dataset was dropped) and 
visualize the results (Extended Data Fig. 6e).

LSP visualization
To visualize the global variability of seasonal LSP that is present in the 
results of our harmonic regression, we used colour-composite visuali-
zation of the results of a dimensionality-reduction analysis to produce 
a single global map. First, we used Python v.3.7 and the eofs package 
(v.1.4.0)97 to run EOF analysis on the covariance matrix of the global set 
of NIRV phenocycles. We standardized each pixel’s phenocycle before 
EOF calculation, ensuring that all pixels had equal variances of 1 and 
therefore allowing the EOF analysis to highlight global variability in 
the shape and timing of LSP patterns, our topic of interest, irrespective 
of spatial variation in NIRV amplitude. Following common practice in 
EOF analysis, we used the square root of the cosine of the latitude as 
pixel area weights.

This calculation reduced the global diversity of average annual 
LSP patterns to four EOFs. Finding that the first three EOFs cumula-
tively explain >90% of the variation in the dataset (91.62%; Extended 
Data Fig. 4a), we min–max scaled them, then displayed them using 
the RGB colour channels, visualizing the bulk majority of global LSP 
variability within a single map. As they have embedded within them 
both the unremarkable north–south hemispheric seasonality dipole 
and hemisphere-independent patterns of interest (for example, 
monsoon-driven LSP dynamics), we transformed the raw EOF maps 
before RGB visualization to represent phenological variability in a 
globally consistent colour scheme. To accomplish this, we used Web-
PlotDigitizer98 to digitize a geospatial vector file of the mean ITCZ in 
both boreal summer ( June, July, August) and boreal winter (December, 
January, February)38, then calculated a single, annual mean ITCZ vector 

by averaging the boreal summer and winter latitudes at evenly spaced 
longitudes around the globe. Finally, for each EOF, we constructed a 
synthetic, transformed map by calculating w × EOF + (1 − w) × (1 − EOF), 
where w varies from 1 in the northern hemisphere to 0 in the south-
ern hemisphere and transitions linearly from 1 to 0 within a 10° lati-
tudinal band surrounding the annual mean ITCZ. We chose to use 
the ITCZ as the latitudinal boundary across which to transform the 
EOF maps because it serves as a more natural meteorological Equa-
tor than does the geographical Equator17,38. To help to interpret the 
result of this visualization across the region surrounding the ITCZ 
(Fig. 1), where some colour-warping occurs, we also generated RGB 
composite maps using untransformed EOF maps and using EOF 
maps transformed uniformly as 1 − EOF (Extended Data Fig. 4b,c). As 
this transformation is used only for visual comparison across hemi-
spheres, it has no influence on any of the analytical results reported in  
our work.

To depict the characteristic phenocycles corresponding to the RGB 
visualization, we use mini-batch k-means clustering (a version of the 
standard k-means clustering algorithm that reduces computational 
burden by using only a fixed-size random subsample of the full data-
set at each iteration) to cluster the standardized, fitted phenocycles 
within a region into k colours, for k = 1:12, then visually inspect a scree 
plot to determine the optimal value of k. Using that chosen value, we 
assign each pixel to one of k clusters, then plot each cluster centre 
(after min–max scaling) as its characteristic phenocycle, coloured 
by the median RGB value across all pixels in the cluster. We used this 
procedure to produce plots interpreting the predominant phenocycles 
both globally (Fig. 1 (main)) and within various focal regions (Fig. 1a–d 
and Extended Data Fig. 5). Before clustering the global map, we rotated 
the fitted phenocycles of all pixels below the mean ITCZ by 182 days 
(that is, half a year) to allow similar phenologies in the northern and 
southern hemispheres to cluster together.

Discovering regional phenological variability in the Great Basin of 
the United States that appeared to match the cheatgrass-invaded, 
sagebrush and montane phenologies presented previously42, we used 
ancillary data from ref. 43, aggregated to the target resolution of our 
map, to calculate the average estimated percentage of annual herba-
ceous cover in each of the three predominant clusters depicted in our 
analysis (Fig. 1b). To support our interpretation of the three clusters 
as annual-invaded communities, sagebrush and montane vegetation, 
which we based on the differences in their estimated average annual 
herbaceous cover and on a visual comparison to ref. 42, we used ANOVA 
to test for a significance difference in the estimated percentage of 
annual herbaceous cover across all three clusters, followed by a Tukey’s 
honest significant difference test to test for significant pairwise differ-
ences between the clusters.

To better highlight complex geographical patterns of spatially vari-
able LSP timing, we also produced a video (Supplementary Video 1) 
animating the min–max scaled average NIRV phenocycle at each pixel. 
Scaling each pixel’s phenocycle in this way forces all pixels to a com-
mon annual amplitude (from zero to one), ignoring spatial differences 
in intra-annual variability caused by variable ecosystem productivity, 
and thus highlighting spatial differences in the timing and rates of 
change of LSP.

Calculation of phenological asynchrony
We exported the GEE results of our filtered harmonic regression as a 
global set of tiled, multiband images of regression coefficients. We 
used GEE’s TensorFlow output format and ‘kernelSize’ argument to 
generate tiles that overlapped their neighbours by 300 km (double the 
largest neighbourhood size in our asynchrony calculations), to allow 
asynchrony to be calculated independently and in parallel.

For each LSP dataset (NIRV, SIF), we calculated our asynchrony metric 
pixel-wise, for all pixels with at least 30 available neighbours, using an 
algorithm based on Martin et al.12 and depicted in Extended Data Fig. 7a:
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(1)	 Calculate the standardized phenocycle for a focal pixel.
(2)	Identify all pixels of which the centrepoints are within the chosen 

neighbourhood radius of the focal pixel (the neighbour pixels).
(3)	For each neighbour pixel: (a) calculate its standardized pheno-

cycle; (b) calculate the 365-dimensional Euclidean phenological 
distance between its phenocycle and the focal pixel’s phenocycle; 
(c) calculate its geographical (geodesic) distance to the focal pixel.

(4)	Calculate asynchrony as the slope of the regression of Euclidean 
phenological neighbour distances on geographical neighbour dis-
tances (or as zero, wherever the slope has P > 0.01).

We used a regression approach to calculate the asynchrony metric 
because it explicitly estimates the spatial rate of change in phenology, 
and therefore well represents the spatial rate of change of seasonal 
timing that is the subject of the ASH12. We standardized phenocycles, 
nullifying differences in amplitude, before calculating Euclidean dis-
tances between them, therefore preserving the timing differences 
that we are interested in, even between similar-shape but out-of-phase 
curves (a criterion not met by other common distance metrics, such 
as dynamic time warping). We ran this calculation in Julia (v.1.4.1)99 on 
UC Berkeley’s Savio cluster, parallelized by tile, then mosaicked the 
results into a global map (Fig. 2a).

We produced this global map for each of three neighbourhood radii 
(50, 100, and 150 km), enabling us to check the sensitivity of our maps 
and our downstream results to this decision. The values of the resulting 
maps, expressed as a spatial rate of change in the target variable’s units 
(that is, Δunittarget_variable/Δm), scale arbitrarily with a map’s neighbour-
hood radius, but each map provides an internally valid quantitative 
basis for assessing and comparing asynchrony between sites. To assess 
the overall level of agreement between the NIRV and SIF asynchrony 
maps, despite the fine-scale noise expected in a neighbourhood metric, 
we mapped and scatter plotted pixel-wise comparisons between the 
two datasets for each of the three neighbourhood radii (Extended Data 
Fig. 8). Moreover, to evaluate the scale-sensitivity of the LSP asynchrony 
maps (and of the asynchrony maps that we likewise calculated for the 
climatic covariates described below), we assessed, for each mapped 
variable, the R2 values for all three pairwise interneighbourhood map 
comparisons (Extended Data Fig. 7b).

To visually depict the asynchrony algorithm, we first simulated 
harmonic-regression output for a low-asynchrony region as a five-layer 
stack of coefficient values with rasters of low relative-magnitude Gauss-
ian noise added to them and for a high-asynchrony region as a five-layer 
stack of mean coefficient values with large relative-magnitude, spa-
tially autocorrelated noise added to them using neutral landscape 
models generated using the nlmpy Python package100. We represented 
each five-layer simulated map as a single-layer map by first calculat-
ing each pixel’s phenocycle from its simulated vector of harmonic 
regression coefficients, then calculating the day of the year when its 
simulated phenocycle attains its peak value. We used this summary 
map, all pixels’ simulated phenocycles and the phenological-distance–
geographical-distance regression (the slope of which serves as the 
asynchrony metric) to graphically depict the asynchrony calculation 
procedure (Extended Data Fig. 7a).

Phenological asynchrony model covariates
For the random-forest (RF) model exploring the potential drivers  
of phenological asynchrony (see below), we produced rasters of physi-
ographic and environmental covariates using workflows combining 
GEE, Julia, Python and GDAL (v.2.2.3)101. First, we applied the same 
harmonic regression and asynchrony-mapping pipeline described 
above, skipping the masking steps that were specific to LSP data qual-
ity concerns, to the 64-year TerraClimate time series dataset102 in the 
GEE catalogue, generating asynchrony maps for the climatic factors 
potentially driving phenological asynchrony: monthly minimum 
and maximum temperature, monthly precipitation and monthly 

climate water deficit. We supplemented this with an equivalently 
produced map of asynchrony in cloud cover, using cloud cover frac-
tions calculated from the internal cloud algorithm flag bit (bit 10 
of the 1 km reflectance data QA band) of the MODIS Aqua and Terra 
daily 1 km global surface reflectance datasets (MYD09GA.061103 and 
MOD09GA.06104) in the GEE catalogue. The R2 values from these har-
monic regressions are also mapped in Extended Data Fig. 3, and the 
asynchrony of the climatic factors is mapped in Extended Data Fig. 7.

To model the potential importance of topographic complexity for 
driving phenological asynchrony, we downloaded a global map of the 
vector ruggedness metric105. We chose this over other measures of 
topographic complexity because of its reduced correlation with slope. 
We downloaded data published previously106, choosing a map based 
on Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) 
elevation data107 and median-aggregated at a scale on par with the 
neighbourhood size of our main LSP asynchrony dataset (100 km).

To allow the model to reflect phenological asynchrony between 
structurally distinct vegetation communities, we used GEE to create 
a global map of entropy in vegetation structure within 100 km neigh-
bourhoods (hereafter, the vegetation entropy map). To do this, we used 
the same 20-year time series of annual MODIS IGBP 0.05° land cover86 
that we used in our LSP data-filtering workflow. We reclassed land cover 
into categories of forest (IGBP classes 1–5: evergreen or deciduous 
broadleaf or needleleaf forests and mixed forest), shrubland (IGBP 
classes 6 and 7: closed and open shrublands), savanna (IGBP classes 
8 and 9: woody savannas and savannas), grassland (IGBP class 10) or 
permanent wetland (IGBP class 11). We then applied the same mask 
used to calculate LSP asynchrony, so that the information captured 
by this covariate would reflect the information included in the LSP 
asynchrony response variable. Next, we reduced the 20-year time series 
to a single map representing the modal class for each pixel across all 
years. Finally, we produced the covariate map by calculating the entropy 
of the vegetation structure classes within each pixel’s 100 km radius 
(the neighbourhood size of our main analysis) as −Σi P(ci) log2P(ci), 
where c is vegetation structure class and P(ci) is the proportion of the 
neighbourhood that is assigned class i.

As LSP asynchrony patterns could be influenced by human LULCC, 
we used GEE to create two other 100-km neighbourhood covariates: 
the mean proportion of subpixels classified as LULCC, and the mean 
frequency of fire. We derived the mean LULCC proportion map from 
a global, harmonized map of Landsat-resolution (30 m) land-cover 
change and land use in 2019108. In GEE, we calculated the proportion of 
subpixels within each of our target-resolution pixels that were classified 
as any land-cover change or land-use class, including classes 92–116 
and 212–236 (tree cover loss since 2000, with or without regrowth), 
classes 240–249 (built-up land) and class 252 (cropland). We applied 
to that LULCC proportion map the same mask used to calculate LSP 
asynchrony, then calculated the mean within a 100 km radial neigh-
bourhood for every pixel.

As the source data for the LULCC map explicitly excludes fire-driven 
tree cover loss, we also used GEE to produce a separate covariate 
map estimating the neighbourhood mean frequency of fire. To 
do this, for each pixel we counted the number of months with a 
recorded burn date in the global monthly MODIS Burned Area data-
set, MCD64A1.061109, divided that by the total number of months in 
the dataset, used the arithmetic mean to aggregate the map from 
its original 500 m resolution to our target resolution, applied the 
same mask applied to the map used to calculate LSP asynchrony, then 
calculated the mean of that fire frequency map within each pixel’s 
100 km radial neighbourhood.

Modelling phenological asynchrony drivers
To explore the potential drivers of LSP asynchrony, we constructed an 
RF model using the R package ranger (v.0.13.1)110 and incorporating the 
set of covariates described above, formulated as:
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where LSP.asy is asynchrony of the LSP dataset used in a given model 
(either NIRV or SIF), ppt.asy is PA, tmp.min.asy and tmp.max.asy are 
minimum and maximum temperature asynchrony, def.asy is climate 
water deficit asynchrony, cld.asy is cloud cover asynchrony, neigh 
indicates the asynchrony neighbourhood radius used to calculate the 
asynchrony metrics for a given model (50, 100 or 150 km), veg.ent is 
vegetation structural entropy, vrm.med is the median vector rugged-
ness metric, luc.prp.mea is mean proportion of LULCC, brn.frq.mea is 
mean fire frequency, and x and y are pixel longitude and latitude (within 
brackets to indicate their inclusion in only half of the suite of mod-
els). We chose the RF algorithm owing to its ability to robustly model 
nonlinear relationships, suited to our expectation that phenological 
asynchrony would be driven by different and potentially interacting 
factors in different regions of the globe. We developed a comprehen-
sive and conservative modelling workflow, which we ran once for each 
combination of LSP dataset (NIRV, SIF), neighbourhood radius (50 km, 
100 km, 150 km), and coordinate inclusion (geographical coordinates 
either included or excluded as covariates). We examined the sensitivity 
of our RF models to the inclusion of geographical coordinates because 
of the lack of consensus about how to handle spatial data in RF model-
ling111,112. This produced a final set of 12 models (Extended Data Fig. 9a). 
As we found that salient results were largely insensitive to choice of LSP 
dataset, neighbourhood radius and coordinate inclusion, we chose the 
100 km, NIRV-based, coordinates-included model as the main model 
to summarize and discuss in the main text of this article.

Before producing final results, we used R v.4.0.3 to prepare the 
modelling data, tune hyperparameters and carry out feature selec-
tion. First, we projected the response and covariate rasters to a metric 
projection (EPSG:3857) to ensure that coordinates were expressed in 
metres, then stacked them and extracted their values at all valid (that 
is, non-masked) pixels. Next, we carried out comprehensive hyper-
parameter tuning113, assessing model performance as a function of 
five RF tuning parameters (number of trees per forest: ‘ntree’ = 150, 
200, 250, 300; fraction of observations to use in each tree, for tree 
decorrelation: ‘sample.fraction’ = 0.3, 0.55, 0.8; minimum number of 
observations that can be captured by a node: ‘min.node.size’ = 1, 3, 5, 
10; size of random subset of variables from which to choose each node’s 
split variable: ‘mtry’ = 1, 3, 5; and whether to sample with replacement: 
‘replace’ = true, false) and as a function of the fraction of the full global 
dataset used for modelling (‘subset.frac’ = 0.05, 0.005; drawn as a ran-
dom subsample, quartile-stratified by the LSP response variable, to 
reduce the computational demand imposed by the size of the modelling 
dataset without causing excessive information loss). We included geo-
graphical coordinates in all models used for hyperparameter tuning, 
as we intended to retain them in the main model unless we found that 
predominant results were highly sensitive to their inclusion. We used 
as a performance metric the root mean squared error (r.m.s.e.) of the 
model fitted to a 60% training split of the subsampled global dataset 
and found that the r.m.s.e. of the predictions made on the 40% test 
split yielded the same set of optimum-performance hyperparameter 
choices. Lastly, before running the final set of models, we confirmed 
that none of our subsetted datasets contained variables with a collinear-
ity of R2 ≥ 0.75, and we used the Boruta feature-selection algorithm and 
R package (Boruta v.7.0.0)114 to select our final feature set (but found 
no features that should be dropped).

We constructed the final 12 models using the optimum hyperparam-
eters indicated by our tuning results (ntree = 300, sample.fraction = 0.8, 
min.node.size = 1, mtry = 5, replace = false and subset.frac = 0.05). To 
evaluate each model, we calculated two variable importance metrics— 
ranger’s default permutation-based importance metric, which 

compares the cross-tree average accuracy of out-of-bag sample pre-
dictions to the accuracy after permuting covariate values, and the 
absolute SHAP values115 summed across all predictions in a model’s 
training dataset, calculated using the R fastshap package (v.0.0.7)116—as 
well as two metrics of overall model performance, R2 and r.m.s.e. To 
help with spatial model assessment, we used trained models to make 
LSP asynchrony predictions at all global pixels, then calculated predic-
tion error maps (Extended Data Fig. 9b shows the error map for the 
main model). Lastly, to aid spatial interpretability of the models, we 
calculated pixel-wise SHAP values and produced global SHAP maps 
for each covariate.

Noting low variability across models in the covariates identified as hav-
ing the highest importance (Extended Data Fig. 9a), we summarized the 
main model (100-km NIRV asynchrony, coordinates included) in the text 
and estimated the predominance of the top two covariates in that model, 
PA (ppt.asy) and MTA (tmp.min.asy), as a normalized difference of abso-
lute SHAP values: predom = (|SHAPppt.asy| − |SHAPtmp.min.asy|)/(|SHAPppt.asy|  
+ |SHAPtmp.min.asy|). We plotted a summary map of the normalized dif-
ference across global regions of high LSP asynchrony (that is, pixels 
≥85th percentile), to show regional variation in the predominance or 
codominance of these two drivers (Fig. 2b; Extended Data Fig. 9c shows 
predominance across all covariates except geographical coordinates).

Isoclimatic phenological asynchrony
To test the hypothesis that phenological asynchrony is less dependent 
on climatic difference at low latitudes than at higher latitudes, we per-
formed an ensemble analysis. Each sub-analysis in the ensemble first 
uses clustering to delineate a global set of high-asynchrony regions, 
then uses matrix regressions to estimate the slope of the relationship 
between climatic and phenological distance (hereafter, the climate–
phenology correlation) within each of those regions. We defined the 
sub-analyses within the ensemble using unique combinations of low, 
middle and high values for three hyperparameters to which our final 
results could exhibit sensitivity, then used Monte Carlo analysis to 
assess the relationship, across the ensemble, between regions’ mean 
latitudes and the strengths of their climate–phenology correlations.

To delineate high-asynchrony regions, we first converted our NIRV 
LSP asynchrony map into a map of maximum asynchrony pixels by 
setting all pixels ≥95th percentile asynchrony value to 1 and masking 
everything else. We then used the density-based spatial clustering of 
applications with noise (DBSCAN) algorithm117, implemented in the 
Python package sklearn (v.1.0.2)76, to cluster those high-asynchrony 
pixels. We chose the DBSCAN algorithm owing to its ability to robustly 
identify clusters of arbitrary shape around the high-density centres of a 
point set without forcing all points to have cluster assignments, which 
was a good match for the noisiness of our asynchrony map. Finally, 
we used the alpha-complex algorithm (a straight-line edge variant 
of the alpha-hull algorithm), implemented in Python by the Alpha 
Shape Toolbox (alphashape, v.1.3.1)118, to delineate high-asynchrony 
regions around those clusters. This enabled us to relax the convexity 
and contiguity assumptions of other hull-determination algorithms 
and, therefore, to flexibly delineate regions with complex shapes (for 
example, mountain arcs) without inevitably including all intervening 
geographical areas, as would occur with convex hulls.

To assess the relationship between the mean latitude of a region and 
the strength of the climate–phenology correlation within that region, 
we first standardized and stacked each of the 19 WorldClim bioclimatic 
variables119 and standardized our global map of fitted phenocycles. 
Then, for each delineated region, we executed the following steps:
(1)	 Draw a set of 1,000 random points within the region that all fall 

within non-masked NIRv LSP pixels (or draw the maximum number 
of points possible, if regions are too small for 1,000 points).

(2)	Calculate the matrix of pairwise phenological distances (distphen) 
between all points (as 365-dimensional pairwise Euclidean distances 
between phenocycles).
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(3)	Calculate the matrix of pairwise climatic distances (distclim) between 

all points (as 19-dimensional pairwise Euclidean distances between 
bioclimatic values).

(4)	Calculate the matrix of pairwise geographical distances (distgeog) 
between all points (as geodesic distances).

(5)	Standardize all three pairwise distance matrix variables (so that 
coefficients of all regressions are β coefficients and, therefore, 
comparable), then run MMRR53 using the formula phenology ~ βc 
climate + βg geography, where βc and βg indicate the strengths of 
the relationships between climatic and phenological distances and 
between geographical and phenological distances, respectively.

To hedge against hyperparameter sensitivity, we chose reasonable 
ranges of low, middle and high values of the key parameters in the clus-
tering and hull-delineation algorithms from which to compose our 
ensemble. The DBSCAN clustering algorithm relies on two parameters 
to which our results might be sensitive: ‘eps’ (epsilon), the maximum 
geographical distance between two points that can be considered 
to be in the same neighbourhood; and ‘min_samples’, the minimum 
number of samples required within a neighbourhood for a point to be 
considered as a core point. The alpha-complex algorithm has an addi-
tional parameter to which our results might be sensitive: ‘alpha’, a value 
controlling how edge members are chosen and, therefore, determin-
ing the maximum complexity of a hull’s edge. To create the ensemble, 
we reran the full regionalization and climate–phenology correlation 
analysis once for each combination of the following parameter values: 
eps = 2, 3.5, 5; min_samples = 0.3, 0.45, 0.6; and alpha = 0.25, 0.75, 1.25.

As a final step, we summarized the ensemble results across the 27 
parameterizations by running the ordinary least squares regression 
model ∣ ∣β γ~ latc lat , using γlat to quantify the relationship between the 
absolute value of the mean latitude of each cluster and the strength of 
its climate–phenology correlation (Fig. 3b). As this regression violates 
the assumption that samples of the independent variables are IID—each 
point represents a clustered and delineated high-asynchrony region, 
and those regions can overlap across distinct parameterizations of the 
sub-analyses—we used Monte Carlo analysis to generate an empirical 
P value for γlat in the ensemble linear regression model. We ran 1,000 
iterations of the same regression, each time permuting the vector of 
lat  values, then calculated an empirical P value as the fraction of the 

1,000 simulated γlat that are at least as extreme as the observed γlat 
(Fig. 3c). To provide a spatially explicit geographical interpretation of 
the results of this analysis, we mapped a summary of the ensemble 
results as a hexbin map (Fig. 3a), with the colour of each hexbin indicat-
ing the mean βc of all high-asynchrony regions (that is, delineated alpha 
hulls) overlapping the bin’s hexagon.

Allochrony by allopatry: flowering
To explore the ability of remotely sensed LSP to predict geographical 
variation in flowering phenology, we tested the correlation between 
NIRV phenocycles and dates of flowering observations for all available 
iNaturalist taxa with non-unimodal flowering histograms and without 
extremely broad latitudinal distributions. First, we used the Python 
API client pyinaturalist (v.0.19.0)120 to download from iNaturalist the 
weekly flowering-observation histogram, and the first ≤5,000 native, 
non-captive, research-grade flowering observations corresponding to 
that histogram, for every taxon having ≥50 annotated flowering obser-
vation records at the time of download (downloads completed between 
5 June 2024, 23:00 UTC and 9 June 2024, 00:00 UTC). This included a 
total of 7,251 taxa out of the 34,438 iNaturalist taxa with at least one 
observation (21.1%). We truncated the raw observation datasets to 
≤5,000 per taxon to limit strain on the iNaturalist API; preliminary 
results showed that this decision was inconsequential because none 
of the 39 taxa affected would ultimately be retained for later analyses.

We further filtered the observation points for each taxon to only those 
with at least 1 km positional accuracy, then used the alpha-complex 

algorithm118, with alpha set to 0.75 (the middle value used in our 
isoclimatic phenological asynchrony analysis) to fit a conservative 
geographical boundary (hereafter, observation range) to the set of 
iNaturalist observations. One taxon dropped out of our analysis at 
this stage because of the failure to fit an observation range. We then 
estimated the number of peaks in the flowering-week histogram for 
each taxon using the following steps:
(1)	 ‘Rotate’ the histogram so that the first instance of its minimum 

value moved into the first position in the vector, to avoid spurious 
results arising from flowering peaks that straddle the last and first 
weeks of the calendar year.

(2)	Fit a kernel density estimation (KDE) to the histogram, using a band-
width of 5 weeks, to reduce the noise resulting from temporal vari-
ance in observation counts.

(3)	Use a simple, neighbour-comparison-based peak-search algorithm 
(implemented in the find_peaks function in the signal module of 
the Python package scipy v.1.13.0)75 to count the number of peaks 
in the KDE with a height ≥60% of the overall range of values in the 
histogram.

(4)	Calculate the absolute value of the lag-1 temporal autocorrelation 
in the observed KDE and in KDEs fitted to 100 permuted versions 
of the rotated flowering histogram.

(5)	If the non-permuted KDE has an empirical P ≤ 0.05 (that is, if the abso-
lute value of the lag-1 temporal autocorrelation of the non-permuted 
KDE is greater than that of ≥95% of the permuted KDEs), then it has 
a significant signal of temporal autocorrelation that probably rep-
resents non-random seasonal variability in flowering activity, so 
assign the counted number of peaks as the observed number of 
flowering-time peaks for the taxon; otherwise, assign zero as the 
observed number of statistically significant flowering-time peaks.

Executing this procedure for all available taxa resulted in 6391 
taxa (88.2%) with unimodal flowering-time histograms and 859 
non-unimodal taxa, including 123 taxa (1.7%) with bimodal histograms, 
one taxon with a trimodal histogram and 735 taxa (10.1%) with no sta-
tistically significant flowering-time peaks. We dropped the unimodal 
taxa from further analysis because they were unlikely to exhibit the 
sharp geographical discontinuities in flowering phenology that were 
our main interest. We retained the 859 non-unimodal taxa to test for 
significant signals of allochrony by allopatry. We summarized these 
results by creating a set of hexbins covering all fitted observation ranges 
and then mapping, for each hexagon, the proportions of taxa with 
zero and with ≥2 flowering-time peaks and the overall proportion of all 
non-unimodal taxa (Extended Data Fig. 10). To preclude significant but 
uninteresting results for taxa broadly distributed across latitudes, and 
therefore affected by the opposite seasonalities of the northern and 
southern hemispheres, we dropped any taxa with samples extending 
beyond both 10° north and south latitudes (196 taxa).

We then looked for evidence of allochrony by allopatry by testing 
each of the 663 remaining taxa for a correlation between intersite 
flowering-date distances and intersite LSP distances. To do this, we 
fitted an MMRR model for each taxon, specified as flowering_date ~ βLSP 
LSP + βC climate + βG geography, where the variables are pairwise dis-
tance matrices and βLSP and its P value were our output values of interest, 
indicating the strength and statistical significance of the relationship 
between LSP and flowering date distances after accounting for envi-
ronmental and geographical distances. Some non-unimodal taxa may 
flower opportunistically, perennially or at multiple discrete times of 
year within the same sites, and should therefore yield insignificant βLSP 
values, but taxa exhibiting the strong geographical discontinuities in 
flowering time that we would expect under allochrony by allopatry 
should yield a significant, positive βLSP value. To produce the distance 
covariates for this model, we calculated flowering date distances as the 
shorter of the two forward-time or backward-time distances between 
two observations’ numerical day-of-year values, LSP distances as the 



365-dimensional Euclidean distances between the observation sites’ 
NIRV phenocycles, climate distances as the 19-dimensional Euclidean 
distances between the sites’ vectors of standardized WorldClim119 
bioclimatic variables and geographical distances as the geodesic 
distances between sites. We corrected βLSP P values to control for the 
false-discovery rate (FDR) using the ‘false_discovery_control’ function 
in the ‘stats’ module of the Python package scipy (v.1.13.0)75 with the 
Benjamini–Hochberg method. Supplementary Table 4 provides results 
for the 43 taxa that remained significant after FDR control (of 614 taxa 
successfully tested, after 49 dropped out because of insufficient data 
for model-fitting), and the full results from all stages of this analysis 
are archived with the data for this study.

To visualize the results of this analysis for an example taxon, we plot-
ted a temporal comparison between the flowering observation dates 
and the flowering observation locations’ min-max scaled phenocycles 
as well as a map of the observation locations, coloured according to 
k-means clustering of the phenocycles (k = 2) to highlight the spatial 
and temporal structure of the geographical discontinuity in phenol-
ogy. We constructed this visualization (Fig. 4a) for two example taxa 
with FDR-corrected significance, chosen to demonstrate the corre-
spondence of their patterns of allochrony by allopatry to the regional 
LSP patterns we had mapped and highlighted earlier in the article  
(M. scabra, in southwestern North America; S. parviflorum, in South 
Africa).

Allochrony by allopatry: genetics
To test whether remotely sensed LSP predicts the phenologically driven 
isolation by time22 that is expected to result from allochrony by allopa-
try, above and beyond isolation by distance121 and isolation by envi-
ronment122, we fitted genetic MMRR models to a pair of datasets from 
two of the few published genetic studies of the ASH, substituting LSP 
distances calculated from our dataset for the authors’ previously used 
measures of asynchronous seasonality, then compared our results to 
theirs. First, we gathered and prepared the genomic and geographical 
data from the only genomic test of the ASH of which we are aware, a 
study of the eastern Brazilian toad R. granulosa25. We used the R package 
adegenet (v.2.1.5)123,124 and data downloaded from the Dryad reposi-
tory for that study (https://datadryad.org/stash/dataset/doi:10.5061/
dryad.pc866t1p4) to calculate a pairwise genetic distance matrix for 80 
samples collected from 51 localities, based on the Euclidean distance 
between allele frequencies at 7,674 independent single-nucleotide 
polymorphism loci. We calculated geographical- and LSP-distance 
matrices as described above, using the geographical coordinates of 
each sample, and prepared a climatic distance matrix using the Euclid-
ean distances between standardized versions of the four WorldClim119 
bioclimatic variables used in the original study: annual mean temper-
ature (BIO1), temperature seasonality (BIO4), annual precipitation 
(BIO12) and precipitation seasonality (BIO15). Five samples fell within 
masked pixels in our LSP dataset and thus could not be included in our 
analysis, yielding a final sample size of 75. We fit an MMRR model speci-
fied as genetic ~ βLSP LSP + βC climate + βG geography, then compared 
our results to the results presented in table 4 of ref. 25. To visualize our 
findings we used k-means clustering with Euclidean distances to divide 
the samples into k = 2 clusters, first clustering by NIRV phenocycles, 
then a second time clustering by genetic distance vectors. We then 
prepared side-by-side equivalent plots showing sample localities and 
their min–max-scaled phenocycles, coloured by either of those clus-
terings, providing a simple visual indication of the extent to which our 
LSP map recapitulates the observed genetic structure (Fig. 4b (top)).

To explore whether disparately related, sympatric taxa might exhibit 
similar patterns of isolation by asynchrony, we repeated the same pro-
cedure for the only other sympatric genetic dataset that we could find 
within previous studies of the ASH: cytochrome B sequencing data 
for the lesser woodcreeper (X. fuscus; Furnariidae)32. We first down-
loaded sample location data from the Zenodo archive for the study 

(http://zenodo.org/records/5012226)125 and the FASTA-formatted sam-
ple sequence data from GenBank. We aligned sequences using ClustalW 
(v.2.1)126 with the default parameter settings and then used jModelTest2 
(v.2.1.10)127 to compare the fit of 44 models of sequence evolution to the 
sequence data. We then calculated pairwise genetic distances under 
the best-fit model (TVM + G), identified with AICc scores, using MEGA 
X (v.10.1.7)128. We then followed the same steps as for the R. granulosa 
data, except that we used all 19 WorldClim variables. Our sample size 
was reduced to 31 because three sampling sites fell within masked LSP 
pixels. The results are visualized in Fig. 4b (bottom).

Allochrony by allopatry: coffee harvest
To test for significant agreement between the harvest season map 
produced by the National Federation of Coffee Growers of Colom-
bia (Federación Nacional de Cafeteros de Colombia, or Fedecafé) and 
our LSP map, we constructed a permutation-based test of an index of 
similarity between the harvest categories in the Fedecafé map and the 
categories resulting from clustering on NIRV phenocycles. First, we 
used WebPlotDigitizer98 to digitize and save a set of sampling points 
within each of the four harvest season colours displayed in a previously 
published Fedecafé map54. Next, we used Python to extract NIRV phe-
nocycles at all unmasked pixels coinciding with those points and then 
used k-means clustering to cluster all extracted phenocycles into four 
clusters. We then calculated the Jaccard index129 of this cluster assign-
ment vis-a-vis the Fedecafé harvest season assignment as:

J n n n n= /( + + ),both Fedecafé LSP both

where nFedecafé is a count of pairwise point comparisons that have the 
same assignment only within the Fedecafé map, nLSP is a count of those 
that have the same assignment only within the LSP clustering and nboth 
is a count of those that have the same assignment in both datasets. 
Finally, we executed the same operation 1,000 times, each time first 
permuting the relationship between the sampling points and their 
phenocycles, generating a set of null J values against which to calculate 
an empirical P value for the observed J value (as the fraction of the 
1,000 simulated J values that are at least as large as the observed J). We 
visualize the overall agreement between the Fedecafé map and ours by 
plotting sampling points on top of the RGB composite from the LSP EOF 
analysis (but not transformed across the ITCZ, given the colour-warping 
this causes within this region) and using colour to match the harvest 
season assignments of the sampling points to a series of line plots of 
their median, 10th percentile and 90th percentile phenocycles in our 
dataset (Fig. 4c).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Input datasets (Supplementary Table 1) are publicly available and 
were accessed using the following resources: MODIS MCD43A4 v061 
surface reflectance (https://developers.google.com/earth-engine/
datasets/catalog/MODIS_061_MCD43A4), OCO-2 SIF (https://daac.
ornl.gov/VEGETATION/guides/Global_High_Res_SIF_OCO2.html), TRO-
POMI SIF (https://doi.org/10.22002/D1.1347), MODIS MCD12C1.061 
annual land cover (https://developers.google.com/earth-engine/
datasets/catalog/MODIS_061_MCD12C1), PhenoCam NDVI (accessed 
using R package phenocamapi: https://github.com/PhenoCamNet-
work/phenocamapi), FLUXNET GPP (https://fluxnet.org/data/), 
percentage of annual herbaceous cover in the Great Basin (https://
doi.org/10.5066/P9VL3LD5), TerraClimate (https://developers.
google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_TERRA-
CLIMATE), MODIS Aqua and Terra surface reflectance cloud bands  
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(https://developers.google.com/earth-engine/datasets/catalog/
MODIS_061_MYD09GA, https://developers.google.com/earth-engine/
datasets/catalog/MODIS_061_MOD09GA), EarthEnv topographic com-
plexity (http://www.earthenv.org/topography), Global Land Analysis 
& Discovery global land cover and land use 2019 (https://glad.umd.
edu/dataset/global-land-cover-land-use-v1), MODIS MCD64A1.v061 
monthly burned area (https://developers.google.com/earth-engine/
datasets/catalog/MODIS_061_MCD64A1), WorldClim bioclimatic 
variables (https://www.worldclim.org/data/worldclim21.html), 
iNaturalist flowering observations (accessed using Python package 
ipynaturalist; https://github.com/pyinat/pyinaturalist), R. granulosa 
single-nucleotide polymorphism data (https://datadryad.org/stash/
dataset/doi:10.5061/dryad.pc866t1p4)130, Xiphorhynchus fuscus 
cytochrome B sequencing data (http://zenodo.org/records/5012226)125 
and Fedecafé Colombian coffee harvest season map data (digitized 
from https://doi.org/10.19053/20275137.3200). All data supporting the 
findings of this study are archived at Zenodo (https://doi.org/10.5281/
zenodo.15654956)131. A GEE app provides the ability to explore the LSP 
modelling method, the global LSP map displayed in Fig. 1 and the global 
LSP asynchrony map displayed in Fig. 2a; it is demonstrated in Extended 
Data Fig. 2e and is linked in our GitHub repository (https://github.com/
erthward/phen_asynch; https://doi.org/10.5281/zenodo.15671259)92.

Code availability
All custom code and details of the computing environments used to run 
it are published in this project’s GitHub repository (https://github.com/
erthward/phen_asynch, https://doi.org/10.5281/zenodo.15671259)92.
 
65.	 Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. 

Remote Sens. Environ. 202, 18–27 (2017).
66.	 van Rossum, G. Python Tutorial Technical Report CS-R9526 (Centrum voor Wiskunde en 

Informatica, 1995).
67.	 Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).
68.	 Gillies, S. et al. Shapely: manipulation and analysis of geometric objects. Zenodo https://

doi.org/10.5281/zenodo.5597138 (2007).
69.	 McKinney, W. Data structures for statistical computing in Python. In Proc. 9th Python in 

Science Conference (eds van der Walt, S. & Millman, J.) 56–61 (SciPy, 2010).
70.	 Jordahl, K. et al. geopandas/geopandas. Zenodo https://doi.org/10.5281/zenodo.2585848 

(2020).
71.	 Gillies, S. et al. Rasterio: geospatial raster I/O for Python programmers (GitHub, 2013); 

github.com/rasterio/rasterio.
72.	 Hoyer, S. & Hamman, J. xarray: N-D labeled arrays and datasets in Python. J. Open Res. 

Softw. 5, 10 (2017).
73.	 Perry, M. Rasterstats: a Python module for summarizing geospatial raster datasets based 

on vector geometries (PyPi, 2013).
74.	 Dask Development Team. Dask: library for dynamic task scheduling (2016).
75.	 Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. 

Nat. Methods 17, 261–272 (2020).
76.	 Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12,  

2825–2830 (2011).
77.	 Seabold, S. & Perktold, J. statsmodels: econometric and statistical modeling with Python. 

In Proc. 9th Python in Science Conference (eds van der Walt, S. & Millman, J.) 92–96 
(SciPy, 2010).

78.	 Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).
79.	 Zeng, L., Wardlow, B. D., Xiang, D., Hu, S. & Li, D. A review of vegetation phenological 

metrics extraction using time-series, multispectral satellite data. Remote Sens. Environ. 
237, 111511 (2020).

80.	 Zeng, Y. et al. Optical vegetation indices for monitoring terrestrial ecosystems globally. 
Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-022-00298-5 (2022).

81.	 Chen, R. et al. TCNIRv: topographically-corrected nearinfrared reflectance of vegetation 
for tracking gross primary production over mountainous areas. IEEE Trans. Geosci. 
Remote Sens. 60, 4409310 (2022).

82.	 Schaaf, C. MODIS User Guide V006 and V006.1 (2024); www.umb.edu/spectralmass/
v006/.

83.	 Yu, L., Wen, J., Chang, C. Y., Frankenberg, C. & Sun, Y. High Resolution Global Contiguous 
SIF Estimates Derived from OCO-2 SIF and MODIS (ORNL DAAC, 2019); https://doi.org/ 
10.3334/ORNLDAAC/1696.

84.	 Köhler, P. et al. Global retrievals of solar‐induced chlorophyll fluorescence with 
TROPOMI: first results and intersensor comparison to OCO‐2. Geophys. Res. Lett. 45, 
10,456–10,463 (2018).

85.	 Köhler, P. & Frankenberg, C. Ungridded TROPOMI SIF (at 740 nm) (1.0) (CaltechDATA, 
2020); https://doi.org/10.22002/D1.1347.

86.	 Friedl, M. & Sulla-Menashe, D. MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 
0.05Deg CMG V061 (NASA LP DAAC, 2022); https://doi.org/10.5067/MODIS/MCD12C1.061.

87.	 Pielou, E. C. The measurement of diversity in different types of biological collections.  
J. Theor. Biol. 13, 131–144 (1966).

88.	 Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 
(1948).

89.	 Townshend, J. et al. MODIS Collection 6.1 (C61) VCF Product User Guide (USGS, 2022); 
lpdaac.usgs.gov/documents/1494/MOD44B_User_Guide_V61.pdf.

90.	 North, J. S., Schliep, E. M. & Wikle, C. K. On the spatial and temporal shift in the archetypal 
seasonal temperature cycle as driven by annual and semi‐annual harmonics. 
Environmetrics 32, e2665 (2021).

91.	 Shumway, R. H. & Stoffer, D. S. Time Series Analysis and its Applications (Springer, 2017).
92.	 Terasaki Hart, D. E., Bùi, T.-N., Di Maggio, L. & Wang, I. J. Code from ‘Global phenology 

maps reveal the drivers and effects of seasonal asynchrony’. Zenodo https://doi.
org/10.5281/zenodo.15671259 (2025).

93.	 R Core Team. R: a language and environment for statistical computing (R Foundation for 
Statistical Computing, 2020).

94.	 Seyednasrollah, B. Phenocamapi: interacting with the PhenoCam data and API 
(PhenoCam Network, 2019).

95.	 Richardson, A. D. et al. Tracking vegetation phenology across diverse North American 
biomes using PhenoCam imagery. Sci. Data 5, 180028 (2018).

96.	 Whittaker, R. H. in Communities and Ecosystems Vol. 42, 154 (Macmillan, 1970).
97.	 Dawson, A. eofs: a library for EOF analysis of meteorological, oceanographic, and climate 

data. J. Open Res. Softw. 4, e14 (2016).
98.	 Rohatgi, A. WebPlotDigitizer version 4.6 (Automeris, 2022); automeris.io/WebPlotDigitizer.
99.	 Bezanson, J., Edelman, A., Karpinski, S. & Shah, V. B. Julia: a fresh approach to numerical 

computing. SIAM Rev. 59, 65–98 (2017).
100.	 Etherington, T. R., Holland, E. P. & O’Sullivan, D. NLMpy: a Python software package for the 

creation of neutral landscape models within a general numerical framework. Methods 
Ecol. Evol. 6, 164–168 (2015).

101.	 Open Source Geospatial Foundation Contributors. GDAL/OGR Geospatial Data Abstraction 
Software Library (Open Source Geospatial Foundation, 2023).

102.	 Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-
resolution global dataset of monthly climate and climatic water balance from 1958–2015. 
Sci. Data 5, 170191 (2018).

103.	 Vermote, E. & Wolfe, R. MODIS/Aqua Surface Reflectance Daily L2G Global 1 km and 500 m 
SIN Grid V061 (NASA, 2021); https://doi.org/10.5067/MODIS/MYD09GA.061.

104.	 Vermote, E. & Wolfe, R. MODIS/Terra Surface Reflectance Daily L2G Global 1 km and 500 m 
SIN Grid V061 (NASA, 2021); https://doi.org/10.5067/MODIS/MOD09GA.061.

105.	 Sappington, J. M., Longshore, K. M. & Thompson, D. B. Quantifying landscape 
ruggedness for animal habitat analysis: a case study using bighorn sheep in the Mojave 
Desert. J. Wildl. Manage. 71, 1419–1426 (2007).

106.	 Amatulli, G. et al. A suite of global, cross-scale topographic variables for environmental 
and biodiversity modeling. Sci. Data 5, 180040 (2018).

107.	 Danielson, J. J. & Gesch, D. B. Global Multi-Resolution Terrain Elevation Data 2010 2011–1073, 
34 (USGS, 2011).

108.	 Hansen, M. C. et al. Global land use extent and dispersion within natural land cover using 
Landsat data. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ac46ec (2021).

109.	 Giglio, L., Justice, C., Boschetti, L. & Roy, D. MODIS/Terra+Aqua Burned Area Monthly L3 
Global 500 m SIN Grid V061 (NASA LP DAAC, 2021); https://doi.org/10.5067/MODIS/
MCD604A1.061.

110.	 Wright, M. N. & Ziegler, A. ranger: a fast implementation of random forests for high 
dimensional data in C++ and R. J. Stat. Softw. 77, 1–17 (2017).

111.	 Li, J., Heap, A. D., Potter, A. & Daniell, J. J. Application of machine learning methods to 
spatial interpolation of environmental variables. Environ. Modell. Softw. 26, 1647–1659 
(2011).

112.	 Sekulić, A., Kilibarda, M., Heuvelink, G. B. M., Nikolić, M. & Bajat, B. Random forest spatial 
interpolation. Remote Sens. 12, 1687 (2020).

113.	 Boehmke, B. & Greenwell, B. Hands-On Machine Learning with R (2019); https://doi.org/ 
10.1201/9780367816377.

114.	 Kursa, M. B. & Rudnicki, W. R. Feature selection with the Boruta package. J. Stat. Softw. 36, 
1–13 (2010).

115.	 Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. In Proc. 
Advances in Neural Information Processing Systems 30 (eds Guyon, I. et al.) (NIPS, 2017).

116.	 Greenwell, B. fastshap: fast approximate shapley values (GitHub, 2024); github.com/
bgreenwell/fastshap.

117.	 Ester, M., Kriegel, H.-P., Sander, J. & Xu, X. A density-based algorithm for discovering 
clusters in large spatial databases with noise. In Proc. KDD-96 (eds Simoudis, E. et al.) 
226–231 (AAAI Press, 1996).

118.	 Bellock, K. E. Alpha Shape Toolbox (2021).
119.	 Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for 

global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
120.	 Noé, N. et al. Pyinaturalist: an INaturalist API client for Python (2018).
121.	 Wright, S. Isolation by distance. Genetics 28, 114–138 (1943).
122.	 Wang, I. J. & Bradburd, G. S. Isolation by environment. Mol. Ecol. 23, 5649–5662 (2014).
123.	 Jombart, T. & Ahmed, I. adegenet 1.3-1: new tools for the analysis of genome-wide SNP 

data. Bioinformatics 27, 3070–3071 (2011).
124.	 Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. 

Bioinformatics 24, 1403–1405 (2008).
125.	 Quintero, I., González-Caro, S., Zalamea, P.-C. & Cadena, C. D. Data from ‘Asynchrony  

of seasons: genetic differentiation associated with geographic variation in climatic 
seasonality and reproductive phenology’. Zenodo zenodo.org/records/5012226  
(2014).

126.	 Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 
(2007).

127.	 Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new 
heuristics and parallel computing. Nat. Methods 9, 772–772 (2012).

128.	 Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary 
genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).

129.	 Pfitzner, D., Leibbrandt, R. & Powers, D. Characterization and evaluation of similarity 
measures for pairs of clusterings. Knowl. Inf. Syst. 19, 361 (2008).

https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MYD09GA
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MYD09GA
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD09GA
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD09GA
http://www.earthenv.org/topography
https://glad.umd.edu/dataset/global-land-cover-land-use-v1
https://glad.umd.edu/dataset/global-land-cover-land-use-v1
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MCD64A1
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MCD64A1
https://www.worldclim.org/data/worldclim21.html
https://github.com/pyinat/pyinaturalist
https://datadryad.org/stash/dataset/doi:10.5061/dryad.pc866t1p4
https://datadryad.org/stash/dataset/doi:10.5061/dryad.pc866t1p4
http://zenodo.org/records/5012226
https://doi.org/10.19053/20275137.3200
https://doi.org/10.5281/zenodo.15654956
https://doi.org/10.5281/zenodo.15654956
https://github.com/erthward/phen_asynch
https://github.com/erthward/phen_asynch
https://doi.org/10.5281/zenodo.15671259
https://github.com/erthward/phen_asynch
https://github.com/erthward/phen_asynch
https://doi.org/10.5281/zenodo.15671259
https://doi.org/10.5281/zenodo.5597138
https://doi.org/10.5281/zenodo.5597138
https://doi.org/10.5281/zenodo.2585848
https://github.com/rasterio/rasterio
https://doi.org/10.1038/s43017-022-00298-5
https://www.umb.edu/spectralmass/v006/
https://www.umb.edu/spectralmass/v006/
https://doi.org/10.3334/ORNLDAAC/1696
https://doi.org/10.3334/ORNLDAAC/1696
https://doi.org/10.22002/D1.1347
https://doi.org/10.5067/MODIS/MCD12C1.061
https://lpdaac.usgs.gov/documents/1494/MOD44B_User_Guide_V61.pdf
https://doi.org/10.5281/zenodo.15671259
https://doi.org/10.5281/zenodo.15671259
https://automeris.io/WebPlotDigitizer
https://doi.org/10.5067/MODIS/MYD09GA.061
https://doi.org/10.5067/MODIS/MOD09GA.061
https://doi.org/10.1088/1748-9326/ac46ec
https://doi.org/10.5067/MODIS/MCD604A1.061
https://doi.org/10.5067/MODIS/MCD604A1.061
https://doi.org/10.1201/9780367816377
https://doi.org/10.1201/9780367816377
https://github.com/bgreenwell/fastshap
https://github.com/bgreenwell/fastshap
http://zenodo.org/records/5012226


130.	 Thomé, M. T. Files used in the analyses from ‘A role of asynchrony of seasons in explaining 
genetic differentiation in a Neotropical toad’. Dryad https://doi.org/10.5061/dryad.
pc866t1p4 (2021).

131.	 Terasaki Hart, D. E., Bùi, T.-N., Di Maggio, L. & Wang, I. J. Data from ‘Global phenology 
maps reveal the drivers and effects of seasonal asynchrony’. Zenodo https://doi.org/ 
10.5281/zenodo.15654956 (2025).

Acknowledgements We thank D. Ackerly, L. Anderegg, A. Bishop, D. Buhrman, M. Davis,  
T. Dawson, D. Ehrenfeld, J. Evans, K. Fesenmyer, H. Flores Moreno, S. Fortney, J. Frederick,  
N. Graham, A. Hoskins, M. Kelly, M. Kling, N. Knezek, N. Muchhala, P. Papper, S. Rollins,  
M. Terasaki Hart, A. Turner, M. Tylka, E. Westeen, G. Wogan, P. Wright and M. Yuan for feedback 
and guidance on this project; C. Paciorek and the staff at Berkeley Research Computing for 
providing access to the Savio computing cluster and for their ongoing support with 
troubleshooting; M. Calderón, I. Escalante Meza, B. Garrigós, T. Gode, E. Hollenbeck, B. Lewis, 
J. Powell, R. Quirós Flores, F. Spooner and the staff of Estación Biológica Las Cruces, Estación 
Biológica Palo Verde, Cloudbridge Nature Reserve and Estación Biológica Monteverde for 
assistance during the field season that was the origin of this work; the PhenoCam Network 
collaborators, FLUXNET collaborators and iNaturalist users who shared their data, as well as 
iNaturalist user M. Podas, whose X. fuscus photograph, under a CC BY-SA 4.0 license  
(https://creativecommons.org/licenses/by-sa/4.0/) was segmented, flipped horizontally and 
lightened for use in Fig. 4b. This work is dedicated to J. Hart, whose time ended too soon but 
whose curiosity lives on. D.E.T.H. was supported by an Emerging Challenges in Tropical 
Science graduate student fellowship from the Organization for Tropical Studies funded by  
the Christiane and Christopher Tyson and Rudy and Sally Ruggles Fellowships, by a Tinker 
Field Research Grant from the UC Berkeley Center for Latin American Studies, by a research 

equipment grant from IdeaWild, by a Berkeley Fellowship and in part by a Bezos Earth Fund 
grant to The Nature Conservancy. I.J.W. was supported by a National Science Foundation grant 
(DEB1845682) and the USDA National Institute of Food and Agriculture (Hatch project 1024618). 
Some data used in this research were provided by the PhenoCam Network, which has been 
supported by the National Science Foundation, the Long-Term Agroecosystem Research 
(LTAR) network, which is supported by the US Department of Agriculture (USDA), the US 
Department of Energy, the US Geological Survey, the Northeastern States Research 
Cooperative and the USA National Phenology Network.

Author contributions D.E.T.H. conceived the study, gathered and prepared the data, designed 
and developed the analyses, prepared the results and figures, and wrote the manuscript. 
L.D.M. and T.-N.B. helped to gather and prepare the data, develop the analyses and figures, 
and write the paper. I.J.W. helped to conceive the study, design the analyses and write the 
manuscript.

Funding Open access funding provided by CSIRO Library Services.

Competing interests The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at 
https://doi.org/10.1038/s41586-025-09410-3.
Correspondence and requests for materials should be addressed to Drew E. Terasaki Hart.
Peer review information Nature thanks the anonymous reviewers for their contribution to the 
peer review of this work. Peer reviewer reports are available.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://doi.org/10.5061/dryad.pc866t1p4
https://doi.org/10.5061/dryad.pc866t1p4
https://doi.org/10.5281/zenodo.15654956
https://doi.org/10.5281/zenodo.15654956
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1038/s41586-025-09410-3
http://www.nature.com/reprints


Article

Extended Data Fig. 1 | Overview of mapping methods and data masking. 
 A. Workflow for all global mapping analyses. B. Maps of data dropped from all 
analyses (in red) and additionally omitted from asynchrony analyses to avoid 

anthropogenic asynchrony in agricultural land cover (black) that could 
confound evolutionary analyses, with colour-matched table reporting 
cumulative masked proportions of total continental land areas.



Extended Data Fig. 2 | LSP model-fitting examples across biomes.  
A. Mediterranean climate: Results of the harmonic regression procedure  
are shown at FLUXNET tower sites distributed across three ecosystems 
displaying the characteristic ‘double peak’ LSP pattern across the Californian 
Mediterranean climate region40: forest (the Blodgett Forest site), oak savanna 
(Tonzi Ranch), and wetland (Twitchell Wetland West Pond). The map on the left 
shows the same RGB composite as Fig. 1. The plots on the right show each site’s 
original, 20-year NIRV time series (solid black line) and fitted phenocycle 
(dashed red line). The abrupt reduction in amplitude in mid-2014 at Blodgett 
Forest, an experimental forestry plot, likely reflects a land use or land cover 
change event, but manual inspection of the MCD12C1 land cover product used 
for our data filtering workflow suggests that the on-ground activity was not 
intensive enough to register a change in mapped land cover type. B. Arid 
climate: Results at two sites in the southern Australian Outback, displayed 
identically to A. Our model assigns divergent phenocycles to these two areas: 
the Nullarbor Plain, along the coast of South Australia (Outback 1), has a 
winter-peaking pattern likely influenced by the Mediterranean monsoonal 
climate, whereas the inland desert (Outback 2) has a fall-peaking pattern likely 
responding to the summer monsoon38 — a rough analogue of the LSP gradient 
we describe in the southwestern USA and northwestern Mexico (Fig. 1a). The 
Outback’s rainfall-driven, globally exceptional interannual variability in 
productivity48 results in interannual variability in the timing and size of NIRV 
peaks. C. Tropical montane climate: Results at two sites in the Colombian 
Andes, displayed identically to A. Tropical montane regions challenge remote 

sensing of phenology because of frequent cloud cover and small intra-annual 
variability in productivity that yields a low signal:noise ratio. Nevertheless the 
regions surrounding these sites exhibit spatially coherent phenocycles that, 
despite their proximity, peak nearly six months apart, paralleling the extreme 
allochrony by allopatry that we document in the complex geography of 
Colombian coffee harvest seasonality (Fig. 4c). D. Boreal climate: Results at  
two sites in Saskatchewan, Canada, displayed identically to A. Long periods  
of snow cover in treeless land cause annually recurring stretches of invalid 
negative NIRV values, which would lead to low data availability and extensive 
data dropout across cleared boreal lands. Backfilling of negative values with 
the minimum positive value observed in a pixel’s time series — causing the 
winter ‘flatlining’ visible in the ‘Boreal field’ plot — allows us to retain these 
areas and fit reasonable phenocycles, revealing the expected synchrony with 
neighbouring forest, where winter values are extremely low but not negative.  
E. Readers can recreate and explore the results of our harmonic regression 
procedure using a Google Earth Engine app (link available at: https://github.
com/erthward/phen_asynch, https://doi.org/10.5281/zenodo.15671259).  
The original NIRV time series is depicted in blue and the fitted phenocycle in  
red for a pair of sites indicated by the map markers. The results depicted here 
reveal a marked difference between the pronounced, unimodal annual 
phenology observed in the floodplain of the Purus River, an Amazon tributary 
(upper line plot), and the bimodal phenology observed in nearby upland forest 
(lower line plot), likely reflecting the strong control of annual flooding over the 
annual phenologies of floodplain habitats8.

https://github.com/erthward/phen_asynch
https://github.com/erthward/phen_asynch
https://doi.org/10.5281/zenodo.15671259
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Extended Data Fig. 3 | Harmonic regression performance. Maps of the R2 values from the harmonic regressions estimating annual LSP maps (top row) and 
climatic seasonality maps (remaining rows).



Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | LSP EOF results and visualization. A. Raw LSP EOF 
maps: Maps on the left show the top four modes of annual LSP spatiotemporal 
variability according to an empirical orthogonal function (EOF) analysis, and 
line plots on the right show the annual temporal variation of the principal 
components (PCs) corresponding to each EOF. EOF values are standardized 
and centred on zero, and maps are ordered by decreasing percent total 
variance explained, from top to bottom. B and C. Non-transformed RGB LSP 

maps: The non-transformed values of all three top EOF modes are depicted as 
RGB values (B), and are subtracted from 1.0 and then depicted as RGB values 
(C). These two representations are the latitudinally-agnostic maps from which 
we derived the transformation presented in Fig. 1 by computing a weighted sum 
of these two maps, with weights varying in a piecewise function from 1.0 to 0.0 
north to south across the ITCZ (dotted black line straddling the equator).



Extended Data Fig. 5 | Intercontinental convergence in LSP. We observed  
a striking convergence between the LSP gradients in Earth’s two more 
climatically moderate Mediterranean climate regions39: the Cape Region of 
South Africa (A) and southern and southwestern Australia (B). In both regions, 
small areas of moist habitat (colour 1 in both panels) show summer-peaking 
phenologies, contrasting with the progression of peaks observed across the 
broader regional aridity gradients (colours 2–4). We also observed convergent 
phenological gradients across coastal-inland aridity gradients in two southern 
tropical regions: Madagascar (C) and the Cape York Peninsula of Queensland, 
Australia (D) show a one-to-two month delay between the summer-peaking 

phenologies of coastal and montane rainforests (colour 1 in both panels) and 
the fall-peaking phenologies observed across drier habitats and non-forest 
(colours 2 and 3). Agricultural mosaics in northern-hemisphere continental 
climates also display convergence, including the Corn Belt region of the USA (E) 
and northern Italy (F), where deciduous and montane forest regions (colour 2 in 
both panels) exhibit characteristic phenologies that peak around July, roughly 
one month ahead of the characteristically delayed peaks18 in prominent maize- 
producing areas (colour 3) but about one-and-a-half months after the peaks in 
other agricultural areas and in non-forest regions (colour 1).
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Extended Data Fig. 6 | LSP map evaluation. A. LSP modality. The NIRV 
phenocycle at each pixel is depicted on a spectrum from strongly bimodal  
(two peaks of equal height; red) to weakly bimodal (two peaks, one twice as 
high as the other; grey) to unimodal (a single peak per year; blue). The pattern 
depicted here is a close match to previously published maps of regions with 
single versus double growing seasons (e.g., Fig. 3 in Garonna et al.4). B. Agreement 
between NIRV and SIF phenocycles. This map depicts each pixel’s R2 between 
the phenocycles fitted to its NIRV and SIF time series. Tan pixels are terrestrial 
locations that have been masked because of invalid land cover or insufficient 
data quality. C. Orbital-gap assessment of seasonality in interpolated Orbiting 
Carbon Observatory 2 (OCO-2) data. Above: Map showing locations of random 
points in three tropical regions (South America in orange, Africa in purple, 
Indo-Pacific and Australia in blue), chosen to fall within OCO-2 orbital gaps 
(n = 180 points; 60 per region). Below: For each sampled point in each of the 
three regions we plot all contemporaneous estimates from the ANN-gridded 
OCO-2 SIF dataset used in our asynchrony maps and from an independent 
TROPOspheric Monitoring Instrument (TROPOMI) SIF dataset (n = 1550 
available contemporaneous estimates). An intercept-free OLS regression 
depicts the significant level of agreement between these two independent sets 
of measurements (model P-value < 5×10-324). D. Evaluation of fitted phenocycles 

against NDVI time series at PhenoCam ground phenology cameras. i. and iii. 
Each phenology camera site (n = 368 sites) is plotted in the environmental 
space defined by mean annual temperature (MAT) and mean annual 
precipitation (MAP), with the Whittaker biomes96 plotted beneath for context. 
Sites are coloured by the R2 (scaled from 0=black to 1=white) between: 1.) the 
annual cycle fitted to the site’s three-day-summary time series of camera- 
derived normalized difference vegetation index (NDVI), averaged across 
all regions of interest within the camera’s field of view to approximate the 
spatial averaging that occurs within a co-located remote sensing pixel; and 2.) 
the phenocycle fitted to the remotely sensed NIRV (i.) or SIF (iii.) data at a site  
(or up to two map pixels away, ~11 km). ii. and iv. Phenology camera evaluation 
performance (R2) across camera NDVI time series lengths, for both the NIRV (ii.) 
and SIF (iv.) datasets, with points coloured by Whittaker biome. Black vertical 
lines indicate the time series lengths of our LSP datasets (20 years for NIRV; 4 1

3
 

years for SIF), for comparison. E. Evaluation of fitted phenocycles against GPP 
time series at FLUXNET eddy covariance flux towers. Visualization is identical 
to D, but depicts the strength of correlation between daily gross primary 
productivity (GPP) time series collected at FLUXNET2015 flux towers 
(n = 170 sites) and LSP phenocycles.



Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Asynchrony calculation and mapping. A. Conceptual 
diagram depicting the stepwise calculation of our spatial phenological 
asynchrony metric, in regions of both low asynchrony (left) and high (right). 
Maps depict spatial heterogeneity in day of the year corresponding to peak 
phenology (circular colorbar provided at far left). Central focal pixel (black 
star) is the pixel for which asynchrony is calculated, using an analysis based on 
pairwise comparisons between the focal pixel and each other pixel inside the 
focal pixel’s neighbourhood (white dashed circle). Line plots show phenocycles 
pertaining to each of the neighbour pixels inside the circular neighbourhood, 
with the focal pixel shown in bold black. Scatter plots depict the relationship 
between pairwise geographic distances and pairwise phenological distances  

for all comparisons between the focal pixel and its neighbours. The slope of the 
trend line fitted to the scatter plot by simple linear regression is taken as the 
focal pixel’s asynchrony metric. Neighbour pixels at lesser (orange) and greater 
(red) geographic distances from the focal pixel are tracked across the plots, 
illustrating how phenological distance increases with geographic distance 
when asynchrony is high. B. Maps showing the results of calculating the 
asynchrony metric presented in subpanel A. for all LSP and climatic variables 
(rows) and across all three neighbourhood radii (columns). Triangle plots (far 
right) show each variable’s map correlations (R2 values) for all three inter-
neighbourhood comparisons.



Extended Data Fig. 8 | NIRV-SIF LSP asynchrony map comparison. Maps 
show the pixelwise differences between standardized NIRV- and SIF-derived 
LSP asynchrony maps, across neighbourhood radii (top row: 50 km; middle: 
100 km; bottom: 150 km). Scatter plots at the right depict the correlation 

between NIRV and SIF LSP asynchrony map pixel values, with an OLS regression 
drawn as a red line and its R2 value indicated. Slope P-value < 5 × 10–324 for all 
three regressions.
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Extended Data Fig. 9 | See next page for caption.



Extended Data Fig. 9 | Modelling of LSP asynchrony drivers. A. Ensemble 
results of random forest modelling of LSP asynchrony drivers. Set of colorized 
tables depicts variable importance, both SHAP-based (left tables) and 
permutation-based (centre), as well as overall model performance (R2 and root 
mean squared error; right) for models either including (top tables) or excluding 
(bottom) geographic coordinates as covariates, and for models using both  
the NIRV and SIF phenology metrics and using all three neighbourhood radii 
(nested columns within tables). Darker orange hues indicate higher relative 
covariate importance. Abbreviations are: neighbourhood mean burn frequency 
(brn.frq.mea), fractional cloud cover asynchrony (cld.asy), asynchrony 
of monthly climate water deficit (def.asy), neighbourhood mean proportion  
of land use and land cover change sub-pixels (luc.prp.mea), asynchrony 

of monthly precipitation (ppt.asy), asynchrony of monthly minimum and 
maximum temperatures (tmp.min.asy and tmn.max.asy), and longitude and 
latitude (x and y). B. Map showing the standardized LSP asynchrony prediction 
errors for the main model (the model whose results are outlined in blue in 
subpanel A: NIRV-based LSP, 100 km neighbourhood radius, with geographic 
coordinates included as covariates). C. Map depicting predominance in main 
model of all covariates except geographic coordinates, within global regions  
of high LSP asynchrony (≥90th percentile). Precipitation asynchrony and 
minimum temperature asynchrony, already the focus of Fig. 2b, are here 
depicted in darker hues to allow better discrimination between the remaining 
covariates.
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Extended Data Fig. 10 | Global distribution of non-unimodal flowering taxa 
from iNaturalist. Hexbin maps showing the global distribution of iNaturalist 
taxa with flowering-date histograms that are non-unimodal, calculated as the 
proportion of all tested taxa whose ‘observation ranges’ (i.e., alpha hulls fitted 
to all observation points) overlap each hexbin. Maps show the proportions of 
taxa with histograms that have no significant temporal flowering peaks (top), 
taxa with histograms that have two or more significant peaks (middle), and taxa 
exhibiting any form of non-unimodality (bottom).
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